& Journal of Advances in Developmental Research (IJAIDR)

== E-ISSN: 0976-4844 e Website: www.ijaidr.com e Email: editor@ijaidr.com

Migrating Legacy ETL Pipelines to Distributed
Spark Ecosystems: Challenges & Strategies

Pavan Kumar Mantha

Pavanmantha777@gmail.com

Abstract

With the aggressive increase in structured and semi-structured enterprise data, 2015-2019, the
environment of large-scale data engineering had changed significantly. Conventional Extract-Transform-
Load (ETL) systems, such as SAS batches, mainframe COBOL ETL programs, Informatica mappings,
Ab Initio graphs, and Oracle PI, were initially designed with vertical scale systems with deterministic
workloads and short concurrency constraints. As the volume of data in financial, retail and
telecommunication sectors- and even government sectors grew to tens of terabytes per day, the
monolithic nature of these ETL environments started assuming a structural performance bottleneck,
schema dependence, and rapidly rising costs of operation based upon licensing models and special-
purpose hardware. Simultaneously, the release of Apache Spark 2.x (2.2 through 2.4) created a new data
processing paradigm that offered horizontally scalable computation on commodity clusters. In turn,
businesses launched mass modernization programs that presupposed the migration of historical
workloads of ETL into cloud-native Spark-based data platforms. This paper amounts to a comprehensive
account of issues, tactics, and architecture changes relating to the migration of the legacy ETL pipelines
into the distributed Spark architectures. The paper is centred on the 2018-2019 enterprise landscape and
Hadoop 2.x-based YARN clusters, Hive Metastore, Kafka ingestion layers and S3/ADLS/GCS storage
backends were at the heart of the new big data frameworks. The study finds such driving forces as cost
optimization, scale requirements, single compute power, and the necessity to provide almost real-time
analytics with Spark Structured Streaming. We discuss various serious migration issues: (a) competency
shortages between legacy developers migrating SAS, COBOL, or PL/SQL into Scala, PySpark, and
concepts of distributed processing; (b) code translation issues when moving deterministic ETL process
logic into corresponding Spark DataFrame or Spark SQL transformations; (c) data fidelity in moving
data between parallel systems; (d) performance scaling of clusters due to shuffle, skewness, and
partitioning; (e) orchestration migration between Control-M, TWS, and Autosys and Airflow and It
suggests a stepwise best-practice approach to migration, which includes workload evaluation, ingestion
architecture normalization, library of reusable code, data quality framework, and performance
optimization methods. A phased cutover model succeeded on the dual-run validation and golden dataset
comparison is also presented in the paper. Moreover, several case studies show tangible performance: 8-
hour SAS credit-risk batch can be reduced to 50 minutes with Spark; mainframe ETL can be replaced
with real-time Katka-Spark ingestion; multi-source customer service can be modernized to partitions of
Parquet-based Spark SQL models. In general, the results show that Spark-based ecosystems can increase
the level of scalability, decrease the costs of operations and enhance the level of reliability and allow
supporting advanced machine-learning and real-time analytics applications. The work is an informative
source to any organization taking on ETL modernization projects, and can add to the overall information
on the practice of distributed data engineering in pre-2020 enterprise computing.

Keywords: Apache Spark 2.x, ETL Migration, Hadoop 2.x, SAS Modernization, Data Engineering,
Structured Streaming, Airflow, YARN Optimization, Legacy ETL, Big Data Architecture.
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1. INTRODUCTION

1.1 Background and Evolution of Enterprise ETL

By 2018, most businesses have experienced increasing constraints with the old ETL offerings which
were originally designed as mainframe-heavy and batch-based data processing. [1-3] Conventional
software and systems like SAS, COBOL batch applications, Informatica PowerCenter, Ab Initio, and
Oracle PL/SQL pipelines were very vertical as the processing power had a direct relationship with
proprietary and expensive hardware. Even though these platforms were strong and dependable, they
lacked elasticity, which reduced them to the level of unsuitability to address the ever growing levels of
volume of enterprise data, speed and diversity. Maintenance was expensive because of software
licensing and hardware specifications and the arduous process of maintaining tightly bound ETL jobs
which frequently contained complex business code that was hard to write down, debug and extend. The
introduction to distributed data engineering infrastructure, especially to Apache Hadoop and Apache
Spark, has radically changed the paradigm of vertical scalability to horizontal scalability. With the help
of commodity hardware clusters, these structures provided the ability to handle workloads through
multiple nodes simultaneously and with high throughput and resiliency. Spark, particularly Spark 2.4,
had some performance improvements such as Catalyst optimizer which supported high-performance
query planning and cost optimization, in-memory computations, and fault-tolerant Resilient Distributed
Datasets (RDDs). It further established fully fledged connectors with cloud storage like Amazon S3,
Azure Data Lake Store (ADLS), and Google Cloud storage (GCS), which makes it easy to connect with
more current data lake systems. All these innovations made Spark a single compute engine, which also
could support not only ETL workload but also SQL analytics, graph processing, streaming pipelines, and
machine learning applications. Consequently, there has been a shift to the newer, and more scalable,
flexible, cost-efficient, Spark-based ETL systems by organizations that have shed the yoke of legacy
hardware-resistant systems, forming the basis of the modern data engineering practices in the enterprise.

1.2. Motivation for Migration

The process of transitioning to new distributed frameworks like Spark due to migration of the old ETL
systems was caused by various strategic and operational reasons. These reasons indicate the changing
needs of enterprise data management because organizations tried to minimize the expenses, enhance
scalability, consolidate the computing power, and implement real-time analytics.

Cost Reduction o)
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Requirements
Unified Compute
Architecture
Cloud Readiness @
Real-Time
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Figure 1: Motivation for Migration
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o Cost Reduction: The reason why migration was so important was the high cost of operation in
ETL environments that were based on legacy. Such systems as SAS/Grid, Informatica, and mainframe
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pipelines used to demand annual multimillion-dollar budgets to cover the proprietary software licenses,
specialized hardware, as well as their continued maintenance contracts. Moreover, upgrading these
systems to accommodate a larger quantity of data was costly and ineffective. Migrating to Spark was
also associated with open-source licensing, and the capability to support commodity clusters or cloud-
based infrastructure at a cost of developing software and hardware goods. Companies would be able to
dedicate the money to analytics, data quality efforts or other new data-driven projects by removing the
need to rely on expensive proprietary software.

J Scalability Requirements: The first generation ETL tools had been aligned to vertical
expansion and could do nothing much with the increasing speed of enterprise volume of data gigabytes
to terabytes and further. The growth of data volumes resulted in larger batch windows, bottlenecks, and
slow reporting and reduced the opportunity of the organization to act on business requirements. The
distributed in-memory processing and automatic parallelization with Spark enabled workloads to be
processed in multiple nodes concurrently and used to process large datasets in an efficient manner. The
ability to scale horizontally not only increased runtime but also provided scalability to enormously larger
analytic demands without control licenses to have them run on costly hardware.

o Unified Compute Architecture: The other reason was the need to centralise different
processing engines in one and the same platform. Spark allows support of several workloads, such as
SQL-based analytics, streaming real-time, machine learning (MLIib), and graph statistics (GraphX), all
in the same ecosystem. This not only simplifies the complexity of operations but also eliminates the
maintenance of numerous special tools and simplifies the development and deployment as well as
maintenance of data pipelines. Cohesive architecture also enhances ETL and analytics integration
making enterprise data activities consistent and nimble.

J Cloud Readiness: Emerging data strategies are turning into cloud-based storage and compute
services. Native support of such systems as Amazon S3, Azure Data Lake Store (ADLS), and Google
Cloud Storage (GCS) in Spark allows companies to move beyond on-premises NAS or SAN systems.
Cloud readiness helps minimize reliance on old hardware, as well as, it grants, efficiency during spikes
in workloads, and scalability alongside global access which allows enterprises to accommodate teams
that are spread across geographical boundaries.

o Real-Time Enablement: Lastly, the need of near real-time analytics created the need to use
Spark. Traditional ETL pipelines were batch-based and could not attain the low-latency demands of the
current business applications; fraud detection, risks monitoring, and operational dashboards. The
Structured Streaming features of Spark allow previously batch pipelines to take incoming data in small
data dribbles and provide near real-time insights, with fault tolerance and consistency. The
transformation enables businesses to respond more quickly, have better decisions and use the flow of
constant data to benefit in competition.

1.3 Legacy ETL Pipelines to Distributed Spark Ecosystems

The move to operation legacy ETL pipelines to distributed Spark ecosystems is a major transformation
in enterprise data engineering, contingent on the constraints of older architecture and delivered by the
potentials of new distributed systems. [4,5] SAS, COBOL, Informatica PowerCenter, PL/SQL, or
mainframe batch programs based ETL pipelines were generally shaped on a sequential processing and
vertical scaling model. It was common that such systems were based on monolithic workflows with
intricate transformation logic, data cleansing procedures and business rules closely bound up in
proprietary scripts or graphical mappings. Though dependable, these architectures could not scale to the
demands of increasing data volumes, more complicated transformations, or reductions of new analytics
loads including machine learning or real-time streaming. The transition of such pipelines to Spark raises
a paradigm shift of centralized, disk-bound processing to distributed, in-memory computation. The basic
design of Spark, Resilient Distributed Dataset (RDD) and DataFrames, and the Data graphics engine are
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capable of executing ETL loads in parallel, on a cluster of commodity or cloud-based nodes. This
horizontal scalability enables organizations to handle their terabytes of data with ease besides shortening
their batch windows to minutes instead of hours. Moreover, Spark offers standardized ecosystem to
support SQL, live streaming, machine learning, and graph analytics enabling businesses to integrate a
variety of legacy systems under one platform. One of the indicators of this migration is the conversion of
old ETL logic into workflows that can be used in Spark. De-compiling some old scripts, converting
custom operators into Spark APIs, and automatic code generation are essential measures of maintaining
business logic and data fidelity. In addition to these technical changes, distributed Spark ecosystems also
have high fault-tolerance, dynamically allocated resources, and could intervene with cloud storage
platforms (HDFS, Amazon S3, Azure Data Lake Store, and Google Cloud Storage). These capabilities
make it possible to create scalable, maintainable, and resilient ETL pipelines, not merely reimagining the
functionality of legacy, but also allowing new possibilities of modern analytics. All in all, the migration
gives organizations the ability to gain rapid processing, a reduction in operational costs as well as
increased agility as it transforms the conventional ETL pipelines into data engineering platforms that are
flexible and high-performing to meet the changing business requirements.

2. LITERATURE SURVEY

2.1 Legacy ETL Systems and Their Limitations

All studies up to 2019 were consistent about the limitations of legacy ETL systems based on SAS,
COBOL and Informatica and so on. [6-9] These conventional worlds were mostly tuned to centralised,
vertically scaled platforms where throughput gains were greatly reliant on either additional CPU,
memory or storage to a solitary machine. Scholars have found that such vertical scaling reached
diminishing returns when the volume of data reached some predictable limit causing plateaus in
performance unresolved easily unless the hardware is heavily invested. ETL pipelines based on SAS and
COBOL, especially, were blamed as having inflexible execution models, hard resource allotment and a
paucity of chances of parallel computing. More modularity was provided by informatica, although the
shared-nothing architecture would continue to suffer with more and more complex data transformations,
particularly in semi-structured or high-velocity data. Another factor that scholars emphasized on was
legacy ETL tools were more likely to have proprietary execution engines and closed ecosystems,
preventing them from adapting to new needs of modern big-data. Such restrictions were also applied to
maintainability: legacy scripts, jobs were commonly deeply intertwined with business logic, prone to
errors, and hard to reverse-engineer because of poor documentation. The lack of scalability to horizontal
data growth and use of distributed compute clusters became a major bottleneck due to the need to
support the scale of increases in the amount of data and speed of access by legacy ETL systems.
Therefore, this literature paved the way to the distributed processing structures by revealing the
structural flaws of old ETL technologies.

2.2 Distributed Processing and Spark

As the concept of distributed computing surfaced, Apache Spark became a controversial technology of
transformation workloads with regard to ETL. Scholarly reviews found the Directed Acyclic Graph
(DAG) scheduler proposed by Spark to be a significant improvement in that it made job execution plans
based on multiple stages and worker nodes optimization possible, eliminating any superfluous data
shuffling and minimizing rework. The implementation of Resilient Distributed Datasets (RDDs)
introduced a new lineage-based fault-tolerance model, which could help Spark to recalculate missing
partitions with the help of expensive replication techniques. The reason given was that this light weight
recovery mechanism played a significant role in Spark being able to manage large scale transformations
in an efficient manner. Furthermore, scholars commended Spark SQL and the Catalyst optimizer that
introduced cost-based optimization, logical plan rewritable logic in addition to advanced code generation
methods to distributed SQL processing. The extensible framework based on rules provided by Catalyst
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enabled Spark to consider several possible execution strategies, and choose the most effective, which
was much more efficient than the traditional MapReduce-like systems used with relational workloads.
The usability of Spark was proven in numerous researches as being better at iterative computations such
as machine learning algorithms, incremental ETL logic, and graph processing where in-memory caching
resulted in the latency being reduced by orders of magnitude over disk-bound systems. Also, Spark
streaming and subsequently Structured streaming together with micro-batch and continuous models of
execution models were developed that allowed real-time data pipelines to be offered with strong
consistency guarantees. When combined with other innovations, Spark transformed itself into a more
widely used platform in all types of modern ETL, analytics, and large-scale data engineering.

2.3 Migration Frameworks

The ETL migration methodology in the literature lends weight to the complexity and process control of
the switch to a modern distributed platform, such as Spark that is based on the previous systems. The
point that is repeated is the vitality of reverse engineering of old ETL logic. Due to the fact that several
organizations have inherited their decades-old scripts that are written in either SAS, COBOL, or
proprietary Informatical workflow, researchers have emphasized the necessity to extract the
transformation rules, data dependencies, timetables, and implicit business semantics in a systematic
manner. Reverse engineering itself is not merely a code translation process, but it involves unpuzzling
undocumented algorithms, exception-processing functions, as well as inter-layer data provenance in a
place where organizational memory might have decayed. After extraction, frameworks of code
translation were often suggested to either automate or semi-automate the translation of legacy ETL logic
into corresponding Spark, SQL, or Python-based workloads. These frameworks typically include a
library of patterns that define how to convert typical patterns of legacy constructs, such as SAS data step
operations or Informatica mappings, to Spark DataFrame or SQL operations. In the literature, the
significance of the data quality automation being part of the migration process is also promoted. The
literature contends that any current ETL system should have automated validation testing, schema
reconciliation, anomaly testing, and check of inconsistent historical data to prevent carrying the
problematic legacy data forward to new systems. Data-quality layers can be automated to ensure
confidence in migrated pipelines, and as well as minimize hand held testing cycles. Lastly, performance
tuning becomes one of the fundamental themes in migration frameworks. In their studies, researchers
view partition pruning, broadcast joins, caching, cluster sizing, and adaptive query execution (AQE) as
the actions that are required to make the migrated pipelines not only recreate the legacy logic, but also
take full advantage of distributed processing opportunities. Taken together, the migration literature
highlights that any successful modernization should involve a multi-stage systematic process involving a
combination of the technical translation exercise with data integrity, operational effectiveness, and
architectural compatibility.

3. METHODOLOGY

3.1 Migration Architecture Overview

The migration architecture is based on a layered approach according to which the old workloads of ETL
processes are transferred out of traditional monoliths based on a distributed computing platform. [10-12]
This framework allows scaling and enhancing the performance among others, but also safety in
maintaining the existing business logic by progressing toward a systematic translation and
modernization strategy. The layers have individual functions in consuming, transforming, recoding, and
operationalizing the legacy processes to the Spark ecosystem.
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Figure 2: Migration Architecture Overview

o Legacy Layer: The legacy layer is made up of ancient enterprise ETL platforms like SAS,
COBOL, Informatica, PL/SQL, and mainframe. These systems normally cover decades-old, and in most
cases, purposeful mission-crucial data streams, including complicated business administration imprinted
in methodical code, macros, and bespoke metadata. These systems are reliable though limited in
scalability, expensive to license, and also inflexible in architecture, making it difficult to create or
modify them. The legacy layer is the origin of the ETL logic, and data flows that are bound to get
modernized.

. Translation Layer: The translation layer is the intermediary that performs the reverse
engineering, mapping and rewrites the legacy ETL logic into the modern, Spark-compatible constructs.
Competing Datal.oader This layer contains tools and frameworks that analyze legacy code, derive
transformation rules, discover dependencies, and translate proprietary operators to Spark SQL, PySpark,
or DataFrame API. It guarantees the semantic equivalence of old and new pipelines through rule-based
mapping programs, automatic code generation, and validation programs. The translation layer minimizes
human labor, human error and reduces time spent on large-scale migration initiatives.

o Spark Ecosystem: The improved pipelines are sent into the Spark ecosystem, which offers
distributed computing and storage facilities. Foundational elements like the HDFS or Amazon S3 can be
used to become a scalable data lake, Hive can be used to provide metadata management and have SQL
compatibility, Kafka can be used to provide ingestion in real-time, and YARN can be used to provide
allocation and management of the resources within the cluster. Distributed engine Spark transforms
allow execution of transformations in parallel, query optimization is adaptive and fault-tolerant- dealing
with the shortcomings of legacy systems. This ecosystem is the operational backbone of the modern
ETL architecture and allows high-throughput batch and streaming workloads.

3.2. ETL Translation Framework

The ETL Translation Framework gives the systematic approach needed to transform the existing ETL
processes into Spark-native pipelines. [13-15] It is used in making sure that business logic developed in
SAS, COBOL, Informatica, PL/SQL, and mainframe environments is properly known, converted, and
confirmed in the new distributed architecture. The framework is generally partitioned into some
functional elements, each of which covers an important stage in the lifecycle of modernization.
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Figure 3: ETL Translation Framework

o Legacy Logic Extraction: The initial phase of the framework involves deriving transformation
logic in the existing ETL scripts and workflows. This is the process of parsing SAS Data Steps, COBOL
programs, Informatica mappings, or PL/SQL stored procedures, to obtain explicit technology like joins,
filters, aggregations and conditional rules. In most instances, implicit behavior such as default handling
of missing values, sequence generation, and system-specific optimizations are not clearly documented,
which are discovered in extraction process as well. The aim of this step is to generate a clean human
readable version of the original logic that is able to be mapped to modern constructs.

o Semantic Mapping and Rule Definition: After the logic has been removed, the framework uses
semantic mapping rules to match the legacy operations to their equivalent in Spark. Since various ETL
tools have different execution semantics, this step offers a rule-based method of matching functions, data
types, operators, and transformation patterns. An example is that SAS MERGE operations can be
translated into Spark join strategies, Informatica expressions can be translated into Spark SQL functions,
and COBOL file reads can be translated into structured DataFrame ingestion. This mapping is used to
make sure that the migrated pipeline maintains the business intent as well as using the distributed
processing capabilities.

o Automated Code Generation: After mapping, the framework calls out a code generation
engine, which translates the standardized logic into either Spark SQL, PySpark or Scala DataFrame
code. Automation saves time and manpower and gets rid of any inconsistencies that may arise by
manually hand-coding lots of jobs. The generator can also develop reusable templates of usual activities
like ingestion, cleansing, and partition management. Moreover, this step guarantees the compliance with
enterprise coding standards as well as modular design rules that enhance the maintainability and
readability of the recently created ETL elements.

o Data Quality and Validation Layer: The automation layer of data quality is a critical
component of the translation framework that ensures accuracy and consistency between the previous
outputs and the new outputs of the Spark. This involves schema reconciliation checks, row-level check
and column-level profiling as well as anomaly checks. Suites of automated validation can check that the
results of migrated pipelines are the same (or deliberately better) than the legacy systems. The step also
assists in filling in any weaknesses in the legacy processes like some hidden data quality problems, hard-
coded filters, or unwritten transformations to be dealt with in the modernization process.

o Optimization and Performance Tuning: The last part of the translation system is performance
tuning to make sure that there is complete optimization of distribution execution. Some of the methods
to focus on tuning strategies are identifying the correct join strategies, controlling the size of partitions,
using broadcast joins, taking advantage of caching and setting Spark to use Adaptive Query Execution
(AQE). The aim here is to optimise the time done and resource use and maintain the original pipeline
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functional behaviour. It is this tuning stage that transforms the ETL code that has been migrated to a
functional equivalent into high-performance production-ready artifact.

o Deployment and Orchestration Integration: Once translated and optimized, the resulting
Spark jobs are incorporated in the orchestration tools in the organization (Airflow, Oozie, Control-M, or
Databricks Jobs). This step makes certain that job requirements, work schedule, failure management and
monitoring patterns are in line with or better than the original heritage working procedures. The
deployment phase completes the circle of migration by ensuring the new ETL pipeline is integrated into
the strong operational framework.

3.3 Data Quality and Reconciliation

In verifying the accuracy and reliability of migrated ETL pipelines, data quality and reconciliation is
important. As legacy systems tend to deliver consistent and highly reputable deliverables, [16-19] the
new processes built on Spark would need to be compared to the old ones on systematic and measurable
terms. The row count comparison is one of the checks, which ensures that the number of records
generated by Spark is equal to the result of the legacy environment. Any gaps in this case normally
indicate minor problems up the stream- missing joins, filtered records, or erroneous ingestion logic and
therefore are the first pointer of logic discrepancy. In addition to counts, the structure has the hash
checks; the hash functions are MD5 or SHA-based and are computed at the row or column level to
confirm that the true values in the data have not been changed in the process of migration. Hashing is a
high confidence approach to identifying even the least changes in manipulation of strings, ordering or
conditional transformation. The other critical measure is the null profiling which will compare the
distribution of the null values in the legacy data set and the data of the Spark database. The handling of
nulls might also be different based on the default functions, data type conversion or platform specific
treatment of blanks and any missing value. The profiling is able to establish such variations earlier and
guarantee that Spark job copies or properly reinterprets legacy logic. The framework also contains the
numerical variance checks, which aim at revealing the differences in the rounding or floating-point
precision or arithmetic difference due to the changes the execution engines. Spark does distributed
arithmetic and, as a consequence, can be used with varying numeric libraries, so there can be minor
variations unless this is carefully managed. Numerical thresholds of variance assists in distinguishing
between acceptable system induced differences and actual logical flaws. A combination of these checks
(row count, hashing, null profiling and numerical variance) constitutes a complete validation suite,
ascertaining the migrated ETL pipelines not only work, but also retain semantic and quantitative
congruence with the legacy results. Such a strict way insulates confidence in the modernization process,
as well as offers the ability to guarantee the data transformation in business-critical manner, which acts
as a constantly measured assurance that the manner does not vary among platforms.

4. RESULTS AND DISCUSSION
4.1 Case Study 1: SAS Credit Risk Migration

Table 1: Case Study 1: SAS Credit Risk Migration

Metric Legacy SAS (%) Spark 2.4 (%)
Runtime 100% 10.4%
Cost 100% 25%
Parallelism 50% 100%
IJAIDR19011677 Volume 10, Issue 1, January-June 2019
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Figure 4: Graph representing Case Study 1: SAS Credit Risk Migration

o Runtime: The runtime measurement shows the significant performance increase following the
migration of the credit risk ETL pipeline of legacy SAS to Spark 2.4. In comparison to SAS jobs that
took 8 hours to run, the Spark-based version took about 50 minutes to run, which is only 10.4 percent of
the time the initial jobs required. This is mostly as a result of the distributed processing support, in
memory computing, and high-speed planning of a Graph of tasks that can be performed simultaneously
on multiple nodes, providing Spark. Rapid runtime does not only allow acceleration of data availability
but also allows more frequent updating and more iterative analytics, which are highly important in credit
risk assessment and decision-making in a timely manner.

o Cost: Another major benefit that is realized in the migration is cost reduction. The old system,
SAS, required license fees, dedicated equipment and a larger share of resources in terms of maintenance
and all these factors amounted to 100 percent of the bottom-up charge. By comparison, Spark with 2.4 in
place on a scalable and optimally used cloud platform provides the same or better performance with 25%
the cost. This cost-efficiency is driven by the savings of hardware, both in terms of dynamic resource
allocation, as well as by the reduction in the cost of software licensing, which is why Spark is more
economical over the long-term ETL operations. These savings can be reinvested in analytics, data
quality advancement, or further development of the range of data-driven activities in organizations.

. Parallelism: Parallelism is a way of testing system capability of running a number of tasks at a
time. The previous SAS implementation had limited parallelism, based on either one node or vertical
scales of architecture, and it is rated at 50%. Spark 2.4, however, takes advantage of an entirely
distributed cluster environment with dynamically assigned tasks, hundreds or thousands of operations
can be performed at the same time, and across worker nodes, ensuring 100% parallel execution. Such a
high level of parallelism has both direct impacts on less run-time and allows multifaceted transformation
of extensive data volumes without any bottlenecks, facilitates batch and near-real-time processing in
current ETL operations.

4.2 Observed Outcomes

The shift to the Spark ecosystem, which is the result of the migration of older ETL systems, was
associated with significant benefits in a variety of operating aspects. A 90 percent decrease in batch
window was one of the most notable. SAS or COBOL-based ETL pipelines were noted to take a long
time to execute in a sequential way, minimal parallelism, and by using disk-version processing of
intermediates. Using Spark and the distributed computing architecture, in-memory processing, and a
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DAG-based execution, batch jobs that used to take a number of hours to finish now could be finished in
just a fraction of a second. This tremendous speed of processing allows companies to perform more
frequent refreshes of their data, makes it easier to conduct almost real-time analytics, and makes
business processes more responsive, especially in dynamic areas of operations like credit risk and fraud
detection. Simultaneously, the migration provided a cut of 70 percent in terms of infrastructure
expenses. Legacy systems were based on dedicated and vertically scaled servers and a license on
specific software that were all expensive to operate. The Spark-based deployment, which runs on
scaleable cloud infrastructure or even commodity clusters enables allocation of compute resources
dynamically as well as optimized storage utilization and minimized usage of licensed ETL engines.
These are not costs savings that impact on performance, on the contrary, they enhance the flexibility and
enable organizations to sever resources, on-demand, with changes in workload which result in more
efficient, cost-effective operations. Besides the benefits of runtime and cost, the migration also increased
reliability and maintainability to the ETL pipelines. Legacy scripts were loosely coupled with business
logic and execution code which made them hard to debug, extend and audit. Its modular programming
model and the strict separation between transformation logic, job arrangement and data storage make
Spark straightforward to monitor, manage errors, as well as to develop with, incrementally. This design
enhancement lowers the operational risk level, minimizes the human factor, and offers the sustainability
structure of further improvement. All these results obtained are indicative that the migration not only
enhances the quantitative parameters of the enterprise, including the runtime and cost, but also reinforces
the overall robustness, agility, and sustainability of the ETL operations.

4.3 Discussion

The results of adopting legacy ETL systems to the Spark ecosystem can be viewed as valuable hints as
to the implications of enterprise data workflow modernization in a broader context. With regards to
performance, the opportunity to reduce the runtime as well as the batch window enormously highlights
the benefits of distributed, in-memory transformation of data to happen on a large scale basis. Spark is
also able to delegate jobs to multiple nodes in parallel, execute iterative-based calculations efficiently,
and optimize their execution plans using its DAG scheduler and Catalyst optimizer, contrasting with
legacy SAS, COBOL, or Informatica systems, which are limited to running in a vertical fashion and
where several sequential tasks must be executed. This does not only help to speed up data availability,
but also helps organizations carry out more frequent and intricate analytics, which can help in faster
business decision cycles. Another notable advantage is cost efficiency, where the open-source
environment and cloud provision model of Spark save a lot of money and costs on licensing and
infrastructure setup. The dynamic management of resources if it relates to workload needs can be critical
in ensuring that the optimum utilization of the compute and storage is being performed which further
reduces the operational expenses. To organizations that must work with tight budgets or whose goals are
to scale quickly, such savings give flexibility to invest in sophisticated analytics, data remedies or
broader coverage of the pipeline. In addition to such measurable elements as runtime and cost, data
reliability and maintainability are the additional factors affecting the migration that are frequently
neglected in the legacy environments. Legacy ETL pipelines are usually monolithic in nature, and they
contain tightly integrated logic that is not easy to debug, monitor, and incrementally enhance. The Spark
architecture brings design patterns of modularity, explicit division of labor between transformation and
orchestration, and effective fault-tolerant designs, which enhance operational resilience. Moreover,
through standardized coding experience and automated translation structures, it is guaranteed on
migrated pipelines that they are simpler to maintain and extend thus minimizing the risk to the
production activities that run continuously. Overall, the discussion reveals that the process of ETL
modernization should be viewed not as a simple technical upgrade but as a strategic way of enabling
agility, efficient, and scalable business. Although meticulous planning, validation, and performance
optimization of the migration is necessary, the empirically-marked improvement in business operations,
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cost, and operational stability demonstrates the reason why organizations are becoming more convinced
that distributed frameworks, such as Spark, are the pillars through which next-generation data
engineering and analytics pipelines must be built.

5. CONCLUSION

The move of the old ETL systems to Apache Spark between 2018 and 2019 is a key development in
enterprise data modernization. Whilst some older systems like SAS, COBOL, Informatica, and
mainframe-based ETL systems proved to be reliable over the decades, they became less scalable in a
vertical way, were monolithic languages, and expensive to run. These systems encountered difficulties in
keeping up with the demands of increasing volumes of data, more and more complex transformations
and the requirement of more rapid analytics. With the switch to Spark, companies could use a
distributed, in-memory computing model that increased the efficiency and flexibility of their data
streams with significant speed. The execution engine using DAG, called Resilient Distributed Datasets
(RDDs) and Catalyst query optimizer all allowed spark to process more jobs its workloads faster and
reliably and transformed batch workloads that would take hours to execute into pipelines that could be
finished in a fraction of that time.

The migration in addition to performance also brought about considerable cost efficiencies. Old ETL
processes used to use costly up-scaled hardware and proprietary licenses that were a constraining
inventory in terms of scalability and rose in operational costs. Spark combined with cloud server tools
like HDFS or S3 and cluster resource managers like YARN enabled the organization to optimize
resource allocation on-the-fly. This cut infrastructure expenses by up to 70 percent as it was observed
and did not worsen processing throughput but actually improved it. This savings were also used to open
possibilities to rebury themselves in sophisticated analytics projects, such as machine learning,
predictive models, and real-time streams, which are difficult or impossible in more traditional ETL
settings.

The other important value of the Spark migration was maintenance and operational reliability
improvements. The ETL scripts that were already in place were usually hard to debug, audit or extend as
they were closely integrated into business logic. Modular and standardized solution that Spark facilitated
as well as automated translation frameworks and strong culmination of data quality validation facilitated
continuous maintenance and minimized operational risk. Furthermore, the capability to unite batch and
streaming workloads in a single ecosystem enabled more responsive and agile data operations, which
sustained close-to-real-time decisions and analytics-based business operations.

Summing up, the transition to Spark not only overcame the constraints of the previous ETL systems but
also preconditioned the development of the current data engineering and analytics functionalities.
Organizations have achieved better runtime, lower costs of operation, and better agility, and have
created a low-cost and scalable platform, which can be utilized in emerging technology like Al and
streaming analytics. This work has identified strategic importance of distributed frameworks in the
modernization of ETL and has given an all-encompassing basis of future projects, which can give
effective insights and best practice of how the enterprise may modernize its data infrastructure without
the extra cost burden, reliability or scalability.
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