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Abstract 

With the aggressive increase in structured and semi-structured enterprise data, 2015-2019, the 

environment of large-scale data engineering had changed significantly. Conventional Extract-Transform-

Load (ETL) systems, such as SAS batches, mainframe COBOL ETL programs, Informatica mappings, 

Ab Initio graphs, and Oracle PI, were initially designed with vertical scale systems with deterministic 

workloads and short concurrency constraints. As the volume of data in financial, retail and 

telecommunication sectors- and even government sectors grew to tens of terabytes per day, the 

monolithic nature of these ETL environments started assuming a structural performance bottleneck, 

schema dependence, and rapidly rising costs of operation based upon licensing models and special-

purpose hardware. Simultaneously, the release of Apache Spark 2.x (2.2 through 2.4) created a new data 

processing paradigm that offered horizontally scalable computation on commodity clusters. In turn, 

businesses launched mass modernization programs that presupposed the migration of historical 

workloads of ETL into cloud-native Spark-based data platforms. This paper amounts to a comprehensive 

account of issues, tactics, and architecture changes relating to the migration of the legacy ETL pipelines 

into the distributed Spark architectures. The paper is centred on the 2018-2019 enterprise landscape and 

Hadoop 2.x-based YARN clusters, Hive Metastore, Kafka ingestion layers and S3/ADLS/GCS storage 

backends were at the heart of the new big data frameworks. The study finds such driving forces as cost 

optimization, scale requirements, single compute power, and the necessity to provide almost real-time 

analytics with Spark Structured Streaming. We discuss various serious migration issues: (a) competency 

shortages between legacy developers migrating SAS, COBOL, or PL/SQL into Scala, PySpark, and 

concepts of distributed processing; (b) code translation issues when moving deterministic ETL process 

logic into corresponding Spark DataFrame or Spark SQL transformations; (c) data fidelity in moving 

data between parallel systems; (d) performance scaling of clusters due to shuffle, skewness, and 

partitioning; (e) orchestration migration between Control-M, TWS, and Autosys and Airflow and It 

suggests a stepwise best-practice approach to migration, which includes workload evaluation, ingestion 

architecture normalization, library of reusable code, data quality framework, and performance 

optimization methods. A phased cutover model succeeded on the dual-run validation and golden dataset 

comparison is also presented in the paper. Moreover, several case studies show tangible performance: 8-

hour SAS credit-risk batch can be reduced to 50 minutes with Spark; mainframe ETL can be replaced 

with real-time Kafka-Spark ingestion; multi-source customer service can be modernized to partitions of 

Parquet-based Spark SQL models. In general, the results show that Spark-based ecosystems can increase 

the level of scalability, decrease the costs of operations and enhance the level of reliability and allow 

supporting advanced machine-learning and real-time analytics applications. The work is an informative 

source to any organization taking on ETL modernization projects, and can add to the overall information 

on the practice of distributed data engineering in pre-2020 enterprise computing. 
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1. INTRODUCTION 

1.1 Background and Evolution of Enterprise ETL 

By 2018, most businesses have experienced increasing constraints with the old ETL offerings which 

were originally designed as mainframe-heavy and batch-based data processing. [1-3] Conventional 

software and systems like SAS, COBOL batch applications, Informatica PowerCenter, Ab Initio, and 

Oracle PL/SQL pipelines were very vertical as the processing power had a direct relationship with 

proprietary and expensive hardware. Even though these platforms were strong and dependable, they 

lacked elasticity, which reduced them to the level of unsuitability to address the ever growing levels of 

volume of enterprise data, speed and diversity. Maintenance was expensive because of software 

licensing and hardware specifications and the arduous process of maintaining tightly bound ETL jobs 

which frequently contained complex business code that was hard to write down, debug and extend. The 

introduction to distributed data engineering infrastructure, especially to Apache Hadoop and Apache 

Spark, has radically changed the paradigm of vertical scalability to horizontal scalability. With the help 

of commodity hardware clusters, these structures provided the ability to handle workloads through 

multiple nodes simultaneously and with high throughput and resiliency. Spark, particularly Spark 2.4, 

had some performance improvements such as Catalyst optimizer which supported high-performance 

query planning and cost optimization, in-memory computations, and fault-tolerant Resilient Distributed 

Datasets (RDDs). It further established fully fledged connectors with cloud storage like Amazon S3, 

Azure Data Lake Store (ADLS), and Google Cloud storage (GCS), which makes it easy to connect with 

more current data lake systems. All these innovations made Spark a single compute engine, which also 

could support not only ETL workload but also SQL analytics, graph processing, streaming pipelines, and 

machine learning applications. Consequently, there has been a shift to the newer, and more scalable, 

flexible, cost-efficient, Spark-based ETL systems by organizations that have shed the yoke of legacy 

hardware-resistant systems, forming the basis of the modern data engineering practices in the enterprise. 

 

1.2. Motivation for Migration 

The process of transitioning to new distributed frameworks like Spark due to migration of the old ETL 

systems was caused by various strategic and operational reasons. These reasons indicate the changing 

needs of enterprise data management because organizations tried to minimize the expenses, enhance 

scalability, consolidate the computing power, and implement real-time analytics. 

 
Figure 1: Motivation for Migration 

 

• Cost Reduction: The reason why migration was so important was the high cost of operation in 

ETL environments that were based on legacy. Such systems as SAS/Grid, Informatica, and mainframe 
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pipelines used to demand annual multimillion-dollar budgets to cover the proprietary software licenses, 

specialized hardware, as well as their continued maintenance contracts. Moreover, upgrading these 

systems to accommodate a larger quantity of data was costly and ineffective. Migrating to Spark was 

also associated with open-source licensing, and the capability to support commodity clusters or cloud-

based infrastructure at a cost of developing software and hardware goods. Companies would be able to 

dedicate the money to analytics, data quality efforts or other new data-driven projects by removing the 

need to rely on expensive proprietary software. 

• Scalability Requirements: The first generation ETL tools had been aligned to vertical 

expansion and could do nothing much with the increasing speed of enterprise volume of data gigabytes 

to terabytes and further. The growth of data volumes resulted in larger batch windows, bottlenecks, and 

slow reporting and reduced the opportunity of the organization to act on business requirements. The 

distributed in-memory processing and automatic parallelization with Spark enabled workloads to be 

processed in multiple nodes concurrently and used to process large datasets in an efficient manner. The 

ability to scale horizontally not only increased runtime but also provided scalability to enormously larger 

analytic demands without control licenses to have them run on costly hardware. 

• Unified Compute Architecture: The other reason was the need to centralise different 

processing engines in one and the same platform. Spark allows support of several workloads, such as 

SQL-based analytics, streaming real-time, machine learning (MLlib), and graph statistics (GraphX), all 

in the same ecosystem. This not only simplifies the complexity of operations but also eliminates the 

maintenance of numerous special tools and simplifies the development and deployment as well as 

maintenance of data pipelines. Cohesive architecture also enhances ETL and analytics integration 

making enterprise data activities consistent and nimble. 

• Cloud Readiness: Emerging data strategies are turning into cloud-based storage and compute 

services. Native support of such systems as Amazon S3, Azure Data Lake Store (ADLS), and Google 

Cloud Storage (GCS) in Spark allows companies to move beyond on-premises NAS or SAN systems. 

Cloud readiness helps minimize reliance on old hardware, as well as, it grants, efficiency during spikes 

in workloads, and scalability alongside global access which allows enterprises to accommodate teams 

that are spread across geographical boundaries. 

• Real-Time Enablement: Lastly, the need of near real-time analytics created the need to use 

Spark. Traditional ETL pipelines were batch-based and could not attain the low-latency demands of the 

current business applications; fraud detection, risks monitoring, and operational dashboards. The 

Structured Streaming features of Spark allow previously batch pipelines to take incoming data in small 

data dribbles and provide near real-time insights, with fault tolerance and consistency. The 

transformation enables businesses to respond more quickly, have better decisions and use the flow of 

constant data to benefit in competition. 

 

1.3 Legacy ETL Pipelines to Distributed Spark Ecosystems 

The move to operation legacy ETL pipelines to distributed Spark ecosystems is a major transformation 

in enterprise data engineering, contingent on the constraints of older architecture and delivered by the 

potentials of new distributed systems. [4,5] SAS, COBOL, Informatica PowerCenter, PL/SQL, or 

mainframe batch programs based ETL pipelines were generally shaped on a sequential processing and 

vertical scaling model. It was common that such systems were based on monolithic workflows with 

intricate transformation logic, data cleansing procedures and business rules closely bound up in 

proprietary scripts or graphical mappings. Though dependable, these architectures could not scale to the 

demands of increasing data volumes, more complicated transformations, or reductions of new analytics 

loads including machine learning or real-time streaming. The transition of such pipelines to Spark raises 

a paradigm shift of centralized, disk-bound processing to distributed, in-memory computation. The basic 

design of Spark, Resilient Distributed Dataset (RDD) and DataFrames, and the Data graphics engine are 
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capable of executing ETL loads in parallel, on a cluster of commodity or cloud-based nodes. This 

horizontal scalability enables organizations to handle their terabytes of data with ease besides shortening 

their batch windows to minutes instead of hours. Moreover, Spark offers standardized ecosystem to 

support SQL, live streaming, machine learning, and graph analytics enabling businesses to integrate a 

variety of legacy systems under one platform. One of the indicators of this migration is the conversion of 

old ETL logic into workflows that can be used in Spark. De-compiling some old scripts, converting 

custom operators into Spark APIs, and automatic code generation are essential measures of maintaining 

business logic and data fidelity. In addition to these technical changes, distributed Spark ecosystems also 

have high fault-tolerance, dynamically allocated resources, and could intervene with cloud storage 

platforms (HDFS, Amazon S3, Azure Data Lake Store, and Google Cloud Storage). These capabilities 

make it possible to create scalable, maintainable, and resilient ETL pipelines, not merely reimagining the 

functionality of legacy, but also allowing new possibilities of modern analytics. All in all, the migration 

gives organizations the ability to gain rapid processing, a reduction in operational costs as well as 

increased agility as it transforms the conventional ETL pipelines into data engineering platforms that are 

flexible and high-performing to meet the changing business requirements. 

 

2. LITERATURE SURVEY 

2.1 Legacy ETL Systems and Their Limitations 

All studies up to 2019 were consistent about the limitations of legacy ETL systems based on SAS, 

COBOL and Informatica and so on. [6-9] These conventional worlds were mostly tuned to centralised, 

vertically scaled platforms where throughput gains were greatly reliant on either additional CPU, 

memory or storage to a solitary machine. Scholars have found that such vertical scaling reached 

diminishing returns when the volume of data reached some predictable limit causing plateaus in 

performance unresolved easily unless the hardware is heavily invested. ETL pipelines based on SAS and 

COBOL, especially, were blamed as having inflexible execution models, hard resource allotment and a 

paucity of chances of parallel computing. More modularity was provided by informatica, although the 

shared-nothing architecture would continue to suffer with more and more complex data transformations, 

particularly in semi-structured or high-velocity data. Another factor that scholars emphasized on was 

legacy ETL tools were more likely to have proprietary execution engines and closed ecosystems, 

preventing them from adapting to new needs of modern big-data. Such restrictions were also applied to 

maintainability: legacy scripts, jobs were commonly deeply intertwined with business logic, prone to 

errors, and hard to reverse-engineer because of poor documentation. The lack of scalability to horizontal 

data growth and use of distributed compute clusters became a major bottleneck due to the need to 

support the scale of increases in the amount of data and speed of access by legacy ETL systems. 

Therefore, this literature paved the way to the distributed processing structures by revealing the 

structural flaws of old ETL technologies. 

 

2.2 Distributed Processing and Spark 

As the concept of distributed computing surfaced, Apache Spark became a controversial technology of 

transformation workloads with regard to ETL. Scholarly reviews found the Directed Acyclic Graph 

(DAG) scheduler proposed by Spark to be a significant improvement in that it made job execution plans 

based on multiple stages and worker nodes optimization possible, eliminating any superfluous data 

shuffling and minimizing rework. The implementation of Resilient Distributed Datasets (RDDs) 

introduced a new lineage-based fault-tolerance model, which could help Spark to recalculate missing 

partitions with the help of expensive replication techniques. The reason given was that this light weight 

recovery mechanism played a significant role in Spark being able to manage large scale transformations 

in an efficient manner. Furthermore, scholars commended Spark SQL and the Catalyst optimizer that 

introduced cost-based optimization, logical plan rewritable logic in addition to advanced code generation 

methods to distributed SQL processing. The extensible framework based on rules provided by Catalyst 
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enabled Spark to consider several possible execution strategies, and choose the most effective, which 

was much more efficient than the traditional MapReduce-like systems used with relational workloads. 

The usability of Spark was proven in numerous researches as being better at iterative computations such 

as machine learning algorithms, incremental ETL logic, and graph processing where in-memory caching 

resulted in the latency being reduced by orders of magnitude over disk-bound systems. Also, Spark 

streaming and subsequently Structured streaming together with micro-batch and continuous models of 

execution models were developed that allowed real-time data pipelines to be offered with strong 

consistency guarantees. When combined with other innovations, Spark transformed itself into a more 

widely used platform in all types of modern ETL, analytics, and large-scale data engineering. 

 

2.3 Migration Frameworks 

The ETL migration methodology in the literature lends weight to the complexity and process control of 

the switch to a modern distributed platform, such as Spark that is based on the previous systems. The 

point that is repeated is the vitality of reverse engineering of old ETL logic. Due to the fact that several 

organizations have inherited their decades-old scripts that are written in either SAS, COBOL, or 

proprietary Informatical workflow, researchers have emphasized the necessity to extract the 

transformation rules, data dependencies, timetables, and implicit business semantics in a systematic 

manner. Reverse engineering itself is not merely a code translation process, but it involves unpuzzling 

undocumented algorithms, exception-processing functions, as well as inter-layer data provenance in a 

place where organizational memory might have decayed. After extraction, frameworks of code 

translation were often suggested to either automate or semi-automate the translation of legacy ETL logic 

into corresponding Spark, SQL, or Python-based workloads. These frameworks typically include a 

library of patterns that define how to convert typical patterns of legacy constructs, such as SAS data step 

operations or Informatica mappings, to Spark DataFrame or SQL operations. In the literature, the 

significance of the data quality automation being part of the migration process is also promoted. The 

literature contends that any current ETL system should have automated validation testing, schema 

reconciliation, anomaly testing, and check of inconsistent historical data to prevent carrying the 

problematic legacy data forward to new systems. Data-quality layers can be automated to ensure 

confidence in migrated pipelines, and as well as minimize hand held testing cycles. Lastly, performance 

tuning becomes one of the fundamental themes in migration frameworks. In their studies, researchers 

view partition pruning, broadcast joins, caching, cluster sizing, and adaptive query execution (AQE) as 

the actions that are required to make the migrated pipelines not only recreate the legacy logic, but also 

take full advantage of distributed processing opportunities. Taken together, the migration literature 

highlights that any successful modernization should involve a multi-stage systematic process involving a 

combination of the technical translation exercise with data integrity, operational effectiveness, and 

architectural compatibility. 

 

3. METHODOLOGY 

3.1 Migration Architecture Overview 

The migration architecture is based on a layered approach according to which the old workloads of ETL 

processes are transferred out of traditional monoliths based on a distributed computing platform. [10-12] 

This framework allows scaling and enhancing the performance among others, but also safety in 

maintaining the existing business logic by progressing toward a systematic translation and 

modernization strategy. The layers have individual functions in consuming, transforming, recoding, and 

operationalizing the legacy processes to the Spark ecosystem. 
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Figure 2: Migration Architecture Overview 

 

• Legacy Layer: The legacy layer is made up of ancient enterprise ETL platforms like SAS, 

COBOL, Informatica, PL/SQL, and mainframe. These systems normally cover decades-old, and in most 

cases, purposeful mission-crucial data streams, including complicated business administration imprinted 

in methodical code, macros, and bespoke metadata. These systems are reliable though limited in 

scalability, expensive to license, and also inflexible in architecture, making it difficult to create or 

modify them. The legacy layer is the origin of the ETL logic, and data flows that are bound to get 

modernized. 

• Translation Layer: The translation layer is the intermediary that performs the reverse 

engineering, mapping and rewrites the legacy ETL logic into the modern, Spark-compatible constructs. 

Competing DataLoader This layer contains tools and frameworks that analyze legacy code, derive 

transformation rules, discover dependencies, and translate proprietary operators to Spark SQL, PySpark, 

or DataFrame API. It guarantees the semantic equivalence of old and new pipelines through rule-based 

mapping programs, automatic code generation, and validation programs. The translation layer minimizes 

human labor, human error and reduces time spent on large-scale migration initiatives. 

• Spark Ecosystem: The improved pipelines are sent into the Spark ecosystem, which offers 

distributed computing and storage facilities. Foundational elements like the HDFS or Amazon S3 can be 

used to become a scalable data lake, Hive can be used to provide metadata management and have SQL 

compatibility, Kafka can be used to provide ingestion in real-time, and YARN can be used to provide 

allocation and management of the resources within the cluster. Distributed engine Spark transforms 

allow execution of transformations in parallel, query optimization is adaptive and fault-tolerant- dealing 

with the shortcomings of legacy systems. This ecosystem is the operational backbone of the modern 

ETL architecture and allows high-throughput batch and streaming workloads. 

 

3.2. ETL Translation Framework 

The ETL Translation Framework gives the systematic approach needed to transform the existing ETL 

processes into Spark-native pipelines. [13-15] It is used in making sure that business logic developed in 

SAS, COBOL, Informatica, PL/SQL, and mainframe environments is properly known, converted, and 

confirmed in the new distributed architecture. The framework is generally partitioned into some 

functional elements, each of which covers an important stage in the lifecycle of modernization. 
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Figure 3: ETL Translation Framework 

 

• Legacy Logic Extraction: The initial phase of the framework involves deriving transformation 

logic in the existing ETL scripts and workflows. This is the process of parsing SAS Data Steps, COBOL 

programs, Informatica mappings, or PL/SQL stored procedures, to obtain explicit technology like joins, 

filters, aggregations and conditional rules. In most instances, implicit behavior such as default handling 

of missing values, sequence generation, and system-specific optimizations are not clearly documented, 

which are discovered in extraction process as well. The aim of this step is to generate a clean human 

readable version of the original logic that is able to be mapped to modern constructs. 

• Semantic Mapping and Rule Definition: After the logic has been removed, the framework uses 

semantic mapping rules to match the legacy operations to their equivalent in Spark. Since various ETL 

tools have different execution semantics, this step offers a rule-based method of matching functions, data 

types, operators, and transformation patterns. An example is that SAS MERGE operations can be 

translated into Spark join strategies, Informatica expressions can be translated into Spark SQL functions, 

and COBOL file reads can be translated into structured DataFrame ingestion. This mapping is used to 

make sure that the migrated pipeline maintains the business intent as well as using the distributed 

processing capabilities. 

• Automated Code Generation: After mapping, the framework calls out a code generation 

engine, which translates the standardized logic into either Spark SQL, PySpark or Scala DataFrame 

code. Automation saves time and manpower and gets rid of any inconsistencies that may arise by 

manually hand-coding lots of jobs. The generator can also develop reusable templates of usual activities 

like ingestion, cleansing, and partition management. Moreover, this step guarantees the compliance with 

enterprise coding standards as well as modular design rules that enhance the maintainability and 

readability of the recently created ETL elements. 

• Data Quality and Validation Layer: The automation layer of data quality is a critical 

component of the translation framework that ensures accuracy and consistency between the previous 

outputs and the new outputs of the Spark. This involves schema reconciliation checks, row-level check 

and column-level profiling as well as anomaly checks. Suites of automated validation can check that the 

results of migrated pipelines are the same (or deliberately better) than the legacy systems. The step also 

assists in filling in any weaknesses in the legacy processes like some hidden data quality problems, hard-

coded filters, or unwritten transformations to be dealt with in the modernization process. 

• Optimization and Performance Tuning: The last part of the translation system is performance 

tuning to make sure that there is complete optimization of distribution execution. Some of the methods 

to focus on tuning strategies are identifying the correct join strategies, controlling the size of partitions, 

using broadcast joins, taking advantage of caching and setting Spark to use Adaptive Query Execution 

(AQE). The aim here is to optimise the time done and resource use and maintain the original pipeline 
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functional behaviour. It is this tuning stage that transforms the ETL code that has been migrated to a 

functional equivalent into high-performance production-ready artifact. 

• Deployment and Orchestration Integration: Once translated and optimized, the resulting 

Spark jobs are incorporated in the orchestration tools in the organization (Airflow, Oozie, Control-M, or 

Databricks Jobs). This step makes certain that job requirements, work schedule, failure management and 

monitoring patterns are in line with or better than the original heritage working procedures. The 

deployment phase completes the circle of migration by ensuring the new ETL pipeline is integrated into 

the strong operational framework. 

 

3.3 Data Quality and Reconciliation 

In verifying the accuracy and reliability of migrated ETL pipelines, data quality and reconciliation is 

important. As legacy systems tend to deliver consistent and highly reputable deliverables, [16-19] the 

new processes built on Spark would need to be compared to the old ones on systematic and measurable 

terms. The row count comparison is one of the checks, which ensures that the number of records 

generated by Spark is equal to the result of the legacy environment. Any gaps in this case normally 

indicate minor problems up the stream- missing joins, filtered records, or erroneous ingestion logic and 

therefore are the first pointer of logic discrepancy. In addition to counts, the structure has the hash 

checks; the hash functions are MD5 or SHA-based and are computed at the row or column level to 

confirm that the true values in the data have not been changed in the process of migration. Hashing is a 

high confidence approach to identifying even the least changes in manipulation of strings, ordering or 

conditional transformation. The other critical measure is the null profiling which will compare the 

distribution of the null values in the legacy data set and the data of the Spark database. The handling of 

nulls might also be different based on the default functions, data type conversion or platform specific 

treatment of blanks and any missing value. The profiling is able to establish such variations earlier and 

guarantee that Spark job copies or properly reinterprets legacy logic. The framework also contains the 

numerical variance checks, which aim at revealing the differences in the rounding or floating-point 

precision or arithmetic difference due to the changes the execution engines. Spark does distributed 

arithmetic and, as a consequence, can be used with varying numeric libraries, so there can be minor 

variations unless this is carefully managed. Numerical thresholds of variance assists in distinguishing 

between acceptable system induced differences and actual logical flaws. A combination of these checks 

(row count, hashing, null profiling and numerical variance) constitutes a complete validation suite, 

ascertaining the migrated ETL pipelines not only work, but also retain semantic and quantitative 

congruence with the legacy results. Such a strict way insulates confidence in the modernization process, 

as well as offers the ability to guarantee the data transformation in business-critical manner, which acts 

as a constantly measured assurance that the manner does not vary among platforms. 

 

4. RESULTS AND DISCUSSION 

4.1 Case Study 1: SAS Credit Risk Migration 

 

Table 1: Case Study 1: SAS Credit Risk Migration 

Metric Legacy SAS (%) Spark 2.4 (%) 

Runtime 100% 10.4% 

Cost 100% 25% 

Parallelism 50% 100% 
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Figure 4: Graph representing Case Study 1: SAS Credit Risk Migration 

 

• Runtime: The runtime measurement shows the significant performance increase following the 

migration of the credit risk ETL pipeline of legacy SAS to Spark 2.4. In comparison to SAS jobs that 

took 8 hours to run, the Spark-based version took about 50 minutes to run, which is only 10.4 percent of 

the time the initial jobs required. This is mostly as a result of the distributed processing support, in 

memory computing, and high-speed planning of a Graph of tasks that can be performed simultaneously 

on multiple nodes, providing Spark. Rapid runtime does not only allow acceleration of data availability 

but also allows more frequent updating and more iterative analytics, which are highly important in credit 

risk assessment and decision-making in a timely manner. 

• Cost: Another major benefit that is realized in the migration is cost reduction. The old system, 

SAS, required license fees, dedicated equipment and a larger share of resources in terms of maintenance 

and all these factors amounted to 100 percent of the bottom-up charge. By comparison, Spark with 2.4 in 

place on a scalable and optimally used cloud platform provides the same or better performance with 25% 

the cost. This cost-efficiency is driven by the savings of hardware, both in terms of dynamic resource 

allocation, as well as by the reduction in the cost of software licensing, which is why Spark is more 

economical over the long-term ETL operations. These savings can be reinvested in analytics, data 

quality advancement, or further development of the range of data-driven activities in organizations. 

• Parallelism: Parallelism is a way of testing system capability of running a number of tasks at a 

time. The previous SAS implementation had limited parallelism, based on either one node or vertical 

scales of architecture, and it is rated at 50%. Spark 2.4, however, takes advantage of an entirely 

distributed cluster environment with dynamically assigned tasks, hundreds or thousands of operations 

can be performed at the same time, and across worker nodes, ensuring 100% parallel execution. Such a 

high level of parallelism has both direct impacts on less run-time and allows multifaceted transformation 

of extensive data volumes without any bottlenecks, facilitates batch and near-real-time processing in 

current ETL operations. 

 

4.2 Observed Outcomes 

The shift to the Spark ecosystem, which is the result of the migration of older ETL systems, was 

associated with significant benefits in a variety of operating aspects. A 90 percent decrease in batch 

window was one of the most notable. SAS or COBOL-based ETL pipelines were noted to take a long 

time to execute in a sequential way, minimal parallelism, and by using disk-version processing of 

intermediates. Using Spark and the distributed computing architecture, in-memory processing, and a 
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DAG-based execution, batch jobs that used to take a number of hours to finish now could be finished in 

just a fraction of a second. This tremendous speed of processing allows companies to perform more 

frequent refreshes of their data, makes it easier to conduct almost real-time analytics, and makes 

business processes more responsive, especially in dynamic areas of operations like credit risk and fraud 

detection. Simultaneously, the migration provided a cut of 70 percent in terms of infrastructure 

expenses. Legacy systems were based on dedicated and vertically scaled servers and a license on 

specific software that were all expensive to operate. The Spark-based deployment, which runs on 

scaleable cloud infrastructure or even commodity clusters enables allocation of compute resources 

dynamically as well as optimized storage utilization and minimized usage of licensed ETL engines. 

These are not costs savings that impact on performance, on the contrary, they enhance the flexibility and 

enable organizations to sever resources, on-demand, with changes in workload which result in more 

efficient, cost-effective operations. Besides the benefits of runtime and cost, the migration also increased 

reliability and maintainability to the ETL pipelines. Legacy scripts were loosely coupled with business 

logic and execution code which made them hard to debug, extend and audit. Its modular programming 

model and the strict separation between transformation logic, job arrangement and data storage make 

Spark straightforward to monitor, manage errors, as well as to develop with, incrementally. This design 

enhancement lowers the operational risk level, minimizes the human factor, and offers the sustainability 

structure of further improvement. All these results obtained are indicative that the migration not only 

enhances the quantitative parameters of the enterprise, including the runtime and cost, but also reinforces 

the overall robustness, agility, and sustainability of the ETL operations. 

 

4.3 Discussion 

The results of adopting legacy ETL systems to the Spark ecosystem can be viewed as valuable hints as 

to the implications of enterprise data workflow modernization in a broader context. With regards to 

performance, the opportunity to reduce the runtime as well as the batch window enormously highlights 

the benefits of distributed, in-memory transformation of data to happen on a large scale basis. Spark is 

also able to delegate jobs to multiple nodes in parallel, execute iterative-based calculations efficiently, 

and optimize their execution plans using its DAG scheduler and Catalyst optimizer, contrasting with 

legacy SAS, COBOL, or Informatica systems, which are limited to running in a vertical fashion and 

where several sequential tasks must be executed. This does not only help to speed up data availability, 

but also helps organizations carry out more frequent and intricate analytics, which can help in faster 

business decision cycles. Another notable advantage is cost efficiency, where the open-source 

environment and cloud provision model of Spark save a lot of money and costs on licensing and 

infrastructure setup. The dynamic management of resources if it relates to workload needs can be critical 

in ensuring that the optimum utilization of the compute and storage is being performed which further 

reduces the operational expenses. To organizations that must work with tight budgets or whose goals are 

to scale quickly, such savings give flexibility to invest in sophisticated analytics, data remedies or 

broader coverage of the pipeline. In addition to such measurable elements as runtime and cost, data 

reliability and maintainability are the additional factors affecting the migration that are frequently 

neglected in the legacy environments. Legacy ETL pipelines are usually monolithic in nature, and they 

contain tightly integrated logic that is not easy to debug, monitor, and incrementally enhance. The Spark 

architecture brings design patterns of modularity, explicit division of labor between transformation and 

orchestration, and effective fault-tolerant designs, which enhance operational resilience. Moreover, 

through standardized coding experience and automated translation structures, it is guaranteed on 

migrated pipelines that they are simpler to maintain and extend thus minimizing the risk to the 

production activities that run continuously. Overall, the discussion reveals that the process of ETL 

modernization should be viewed not as a simple technical upgrade but as a strategic way of enabling 

agility, efficient, and scalable business. Although meticulous planning, validation, and performance 

optimization of the migration is necessary, the empirically-marked improvement in business operations, 

https://www.ijaidr.com/


 

Journal of Advances in Developmental Research (IJAIDR) 

E-ISSN: 0976-4844   ●   Website: www.ijaidr.com   ●   Email: editor@ijaidr.com 

 

IJAIDR19011677 Volume 10, Issue 1, January-June 2019 11 

 

cost, and operational stability demonstrates the reason why organizations are becoming more convinced 

that distributed frameworks, such as Spark, are the pillars through which next-generation data 

engineering and analytics pipelines must be built. 

 

5. CONCLUSION 

The move of the old ETL systems to Apache Spark between 2018 and 2019 is a key development in 

enterprise data modernization. Whilst some older systems like SAS, COBOL, Informatica, and 

mainframe-based ETL systems proved to be reliable over the decades, they became less scalable in a 

vertical way, were monolithic languages, and expensive to run. These systems encountered difficulties in 

keeping up with the demands of increasing volumes of data, more and more complex transformations 

and the requirement of more rapid analytics. With the switch to Spark, companies could use a 

distributed, in-memory computing model that increased the efficiency and flexibility of their data 

streams with significant speed. The execution engine using DAG, called Resilient Distributed Datasets 

(RDDs) and Catalyst query optimizer all allowed spark to process more jobs its workloads faster and 

reliably and transformed batch workloads that would take hours to execute into pipelines that could be 

finished in a fraction of that time. 

 

The migration in addition to performance also brought about considerable cost efficiencies. Old ETL 

processes used to use costly up-scaled hardware and proprietary licenses that were a constraining 

inventory in terms of scalability and rose in operational costs. Spark combined with cloud server tools 

like HDFS or S3 and cluster resource managers like YARN enabled the organization to optimize 

resource allocation on-the-fly. This cut infrastructure expenses by up to 70 percent as it was observed 

and did not worsen processing throughput but actually improved it. This savings were also used to open 

possibilities to rebury themselves in sophisticated analytics projects, such as machine learning, 

predictive models, and real-time streams, which are difficult or impossible in more traditional ETL 

settings. 

 

The other important value of the Spark migration was maintenance and operational reliability 

improvements. The ETL scripts that were already in place were usually hard to debug, audit or extend as 

they were closely integrated into business logic. Modular and standardized solution that Spark facilitated 

as well as automated translation frameworks and strong culmination of data quality validation facilitated 

continuous maintenance and minimized operational risk. Furthermore, the capability to unite batch and 

streaming workloads in a single ecosystem enabled more responsive and agile data operations, which 

sustained close-to-real-time decisions and analytics-based business operations. 

Summing up, the transition to Spark not only overcame the constraints of the previous ETL systems but 

also preconditioned the development of the current data engineering and analytics functionalities. 

Organizations have achieved better runtime, lower costs of operation, and better agility, and have 

created a low-cost and scalable platform, which can be utilized in emerging technology like AI and 

streaming analytics. This work has identified strategic importance of distributed frameworks in the 

modernization of ETL and has given an all-encompassing basis of future projects, which can give 

effective insights and best practice of how the enterprise may modernize its data infrastructure without 

the extra cost burden, reliability or scalability. 
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