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Abstract: 

In-vehicle assistants (IVAs) are increasingly central to enhancing driver experience, yet most existing 

systems rely heavily on cloud-based personalization, which poses latency, connectivity, and privacy 

concerns. This project addresses the challenge of delivering runtime personalization in IVAs through 

a lightweight, onboard adaptive intelligence layer. The proposed system modifies speech, visual 

overlays, and prompts dynamically, using real-time inputs such as vehicle context (e.g., speed, driving 

mode) and driver profiles (e.g., user role, behavior patterns). A modular rule-based engine combined 

with embedded machine learning allows adaptation without external server dependency, enabling 

consistent performance even in low-connectivity scenarios. The architecture supports three 

personalization tiers—trip-type, vehicle-state, and user-role—and demonstrates a latency reduction of 

up to 42% compared to conventional cloud-reliant methods. Early prototype testing in a simulated 

vehicle environment indicates a 23% improvement in driver engagement scores and smoother human-

machine interaction. This approach bridges infotainment usability with local intelligence, paving the 

way for future personalization strategies that prioritize responsiveness, contextual relevance, and data 

sovereignty. 

 

Keywords: Runtime personalization, in-vehicle assistants, driver profiling, vehicle context, adaptive 

overlays, onboard machine learning. 

 

I. INTRODUCTION 

The evolution of in-vehicle assistants (IVAs) has transformed the landscape of human-machine interaction in 

the automotive domain. As vehicles become increasingly digitized, IVAs are no longer confined to basic voice 

commands or navigation support. Rather, they are becoming e-compassionate interfaces of infotainment, 

monitor the driver and control the system. According to industry reports, more than 85 percent of new cars 

worldwide feature some type of voice control or virtual assist system as part of the movement towards smart, 

context-sensitive vehicle settings. 

 

The degree of personalization in IVAs is still, to a large extent, cloud-based, where user profiles, 

habit/behavioral anticipation, and service customization are based on distant data centers. Although clouds 

provide scalability, and ease of computation, they present big limitations especially in the features of latency, 

reliability of communication, and privacy of data. User experience, response times, and even features may be 

impaired by connectivity loss, even during a small or brief period in a high-mobility situation like a highway 

or rural area.  

 

The increasing requirement of personalization with real-time and context-sensitive embedded privacy drive 

home the necessity of a runtime solution that will invariably work on the vehicle itself. This project responds 

to that need by developing a runtime personalization framework for IVAs using vehicle context and driver 

profiles. The system leverages embedded intelligence to dynamically adjust assistant behavior—modifying 
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speech tone, interface visuals, and interaction prompts—in response to real-time environmental and user-

specific data. Key variables include driver role (e.g., primary user, guest), vehicle state (e.g., speed, gear, 

battery level), and trip type (e.g., routine commute, leisure travel, business trip). 

The scope of this research encompasses the design, implementation, and evaluation of a rule-based 

personalization engine enhanced with lightweight machine learning models. The emphasis is on real-time 

operation, minimal computational overhead, and robustness in connectivity-constrained scenarios. A 

prototype system was developed and tested using simulated vehicle data, demonstrating that the proposed 

approach can personalize interactions with up to 23% higher user satisfaction and 42% lower response time 

compared to traditional cloud-assisted models. 

 

The central research question addressed is: How can runtime personalization of IVAs be achieved using 

onboard vehicle context and driver profiles without depending on cloud infrastructure? To answer this, the 

research investigates methods for context interpretation, profile integration, and adaptive interface 

modulation, ultimately contributing to the field by offering a deployable model for real-time, local 

personalization in automotive environments. 

 

This paper is structured as follows: Section 3 presents a review of related literature and identifies current 

limitations. Section 4 outlines the architecture and core components of the proposed system. Section 5 details 

the methodology, including data handling, design logic, and personalization rules. Section 6 reports on the 

evaluation strategy and experimental results. Section 7 offers a critical discussion on system performance and 

limitations, while Section 8 concludes with final insights and directions for future development. 

 

II. RELATED WORK (LITERATURE REVIEW) 

IVA systems is a field that has grown at an accelerated pace within the last decade as AI-powered 

functionalities are becoming more integrated to aid the navigation, communication, entertainment, and control 

aspects. The majority of modern IVAs incorporate voice interfaces that are based on natural language 

processing (NLP) and are task and query-oriented. The major car makers and software suppliers have released 

branded assistants, which can understand speech, advise in real-time, and do some personalization. Such 

systems are however largely cloud-based and are therefore dependent on external networks to perform user-

specific adaptations [1]. 

 

IVAs run on cloud servers, providing benefits in regard to computing power and data centralization, allowing 

flexibly updated AI models and dynamic functions. However, they cannot be effective in mobile or distant 

settings where the internet connection is not stable. The empirical work reports that response latency may 

triple on weak-signal, and system availability can fall below 80 percent on rural or highway conditions. 

Further, the privacy implications of the constant transmission of data have led to the desire to find solutions 

that emphasize local data processing. 

 

The personalization approach in IVAs has focused on using machine learning (ML), which is mostly used in 

the prediction of voice commands, determination of user intent, and content suggestion [2]. Cloud ML models 

also have the advantage of large datasets and training in a cyclic form, which give it high accuracies albeit at 

the cost of high bandwidth. By contrast, onboard ML models, being limited by their computational power, 

have lower latency and provide higher control over user data. Embedded AI has recently facilitated direct 

deployment of simplified models in and on the vehicle infotainment unit or on separate ECUs, with infers 

completed in a basic classification task in under 150 milliseconds. However, their application is usually 

restricted to fixed profiles or prepared behaviors with little adaptation on the fly [3]. 

 

Another dimension that is of paramount significance in the research on personalization is that of driver 

profiling. The traditional methods are based on the traditional characteristics like the identity of the user, the 
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frequency of vehicle use, and the preferred language. Fine tracking, though, incorporates behavioral 

information such as tone of voice, rate of interaction, path selection, and seat modification. These localization 

cues are critical to generalizing user roles, either as main drivers, sub-users, or incidental riders [4].  

 

Along with driver profiles, the vehicle context data also provides useful entries to personalization during 

runtime. The speed, acceleration, driving mode, cabin temperature, fuel status are all parameters that provide 

real-time situational awareness. By incorporating such inputs in the decision-making process of the assistant 

it is possible to adjust the response to the driving situation. Even when such contextual information is available 

through in-vehicle sensors and CAN bus systems, current systems tend to utilize them minimally, as 

secondary, periphery, personalization drivers [5]. 

 

Automotive UX and runtime adaptation, especially based on multimodal interfaces, are underdeveloped. The 

majority of systems are built considering specific interaction patterns with regular rigidity to adapt to varying 

trip situations or individualizes. Though few vehicles already provide minimal UI corrections, e.g., brightness 

settings or voice alterations, these are seldom computer-controlled or adaptive [6]. Real-time interface 

adaptation that considers both environmental and behavioral signals have the potential to significantly 

improve user engagement and comfort.  

 

 
Fig. 1: Context-Aware infotainment system block diagram 

 

This review highlights several critical gaps addressed by the present work. First, there is a lack of IVA systems 

that combine onboard ML with rule-based engines to deliver flexible, real-time personalization independent 

of cloud infrastructure. Second, while both driver profiling and vehicle context have been individually 

explored, their joint utilization in runtime overlays—modifying speech, visuals, and prompts 

simultaneously—remains largely unexplored [7]. Third, current implementations overlook the concept of trip-

type-based adaptation, where the assistant adjusts tone and interaction depth depending on whether the trip is 

routine, business-related, or leisure.  

 

By addressing these deficiencies, this project introduces a     comprehensive personalization framework that 

leverages driver profiles, vehicle context, and trip semantics to dynamically tailor assistant behavior [8]. 

Through local processing and modular design, the proposed system advances the field by delivering 

personalization that is both responsive and resilient, suitable for real-world deployment across a wide range 

of connectivity environments. 

 

III. SYSTEM ARCHITECTURE AND DESIGN 

The runtime personalization system of in-vehicle assistants has architecture that functions entirely onboard, 

which allows real-time flexibility without using cloud components. The architecture is scalable, being 

modular, and consists of five large components, namely input acquisition, context processor, adaptive 
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intelligence layer, personalization engine, and overlay interface controller. Every module takes a particular 

task to minimize the latency, maximize data processing, and dynamical changes during the driving session. 

The architecture of the system is also designed towards low power embedded systems, compatible with 

automotive quality infotainment modules or edge devices [9]. 

A. Block Diagram of System Architecture 

The architecture of the system is organized into a multi-stage real-time personalization data pipeline. It starts 

with the Sensor & Input Data Layer that retrieves vehicle telemetry, user credentials, and the environment 

around. The Context Classification Engine and the Driver Profiling Module process this data in order to 

determine the user role and trip context. These are then conveyed to the Adaptive Intelligence Layer where a 

hybrid Rule-Based/ML Personalization Engine makes a decision. The adaptive outputs (e.g., speech, pictures, 

and cues) are generated by use of the Overlay Interface Controller. Each of the modules can communicate 

with one another using a lightweight message bus with sub-80 millisecond latency [10]. 

 

 
Fig 2: Automotive HMI system structure 

 

B. Adaptive Intelligence Layer 

Adaptive intelligence layer plays the role of interface between the input processing and output generation. Its 

main field is to process the classified inputs and find out the personalization logic that should be used. The 

layer entails a hybrid decision-making process: a lightweight ML classifier to do the context recognition, and 

a deterministic rule engine to process personalization actions. The result of this two-tier system is performance 

flexibility on embedded hardware. 

The ML classifier does the multi-class prediction of the fused input (vehicle state, trip metadata, driver 

interaction history) and returns labels such as routine trip, high-stress state, or guest user. It has a model size 

of less than 1.5 MB and is optimized to infer on ARM Cortex-A processors where the mean classification 

time is 120 milliseconds [11]. This output is given to the rule engine which has a set of logical rules used to 

arrive at overlay configurations. As an example, when the user is a guest on a business trip and the vehicle is 

in sport mode, the less important notifications will be suppressed, and the assistant tone will shift to formal. 

C. Overlay System: Speech, Visuals, and Prompts 

The in-vehicle assistant is based on a three-core basis of the overlay system (speech, images, and prompts). 

These modules work independently, or in a coordinated mode in order to provide a context-sensing user-

interface. The overlays are dynamic and change at run-time depending on indictions by the personalization 

engine, which reads the profile of the driver, the type of trip and the state of the vehicle [12]. They both help 

in keeping the assistant coherent in communication, in terms of beauty, and functionality in many 

circumstances of driving. 

Speech Overlay 

The speech module varies its features dynamically according to the contextual requirements of the user. The 

tone, tempo and verbosity of voice responses can be adjusted using three pre-defined speech profiles: casual, 
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formal and directive. As an example, the assistant gives a warm tone and provides full-sentence guidance on 

relaxed or routine driving with the primary user. Conversely, it uses a much shorter, direct speech when 

traveling at high speeds or on business to save the processing power of the brain. The rule-based mappings 

cascading with scenario classification outputs motivate these transitions so that the related speech behavior is 

relevant and non-obtrusive [13]. 

 

 
Fig 3: Speech and visual overlay car system 

Visual Overlay 

The visual interface is optimized for clarity and responsiveness. It includes configurable dashboard themes, 

color palettes, and display densities. Context-aware triggers such as ambient lighting, vehicle speed, or user 

fatigue levels influence visual adaptation. In low-light or fatigue-prone conditions, the display shifts to a high-

contrast, low-brightness theme to reduce eye strain. During navigation-heavy trips, map detail is prioritized, 

while secondary elements like media controls are minimized. Visual updates occur within 50 milliseconds, 

enabled by pre-cached themes and hardware acceleration, ensuring smooth transitions without noticeable 

delay [14]. 

Prompt Overlay 

Prompts form the assistant’s proactive communication layer. These include route recommendations, fuel 

alerts, break reminders, and hazard warnings. Prompts are governed by contextual parameters such as driver 

type, urgency, and trip context. For frequent users on leisure trips, lower-priority prompts are allowed to 

enhance engagement. Conversely, for guest users or high-speed scenarios, only high-priority alerts are shown 

to maintain focus. The prompt system maintains an internal queue with adjustable frequency controls, 

ensuring the interface remains supportive but not intrusive. 

By integrating these overlays with the personalization engine, the system ensures adaptive, multimodal 

feedback that enhances driver comfort, safety, and engagement. 

D. Data Inputs: Vehicle Context, Driver Profile, Trip Type 

The personalization system relies on a comprehensive set of real-time and historical inputs. These are 

structured into three main categories: 

Vehicle Context 

This contains information on the onboard CAN bus including, speed, gear position, drive mode, engine 

temperature and GPS coordinates. This data is compiled every 1 Hz through a context aggregation module 

and a condition such as sudden acceleration or gear shift triggers an update of the overlay [15]. 

Driver Profile 

Registration of users generates profiles which are enhanced as time goes by via usage dates. The attributes 

are the mode of interaction, language, response time, and behavior patterns e.g., regular destinations or 

interface preferences. Every profile is local and encrypted, which is anonymous and allows low access latency 

(less than 20 milliseconds). 
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Trip Type 

The classification of trips is done at the beginning of the journey based on metadata like calendar entry (where 

possible), type of destination, time of day and history of previous trips. These features are then used to label 

the trip as being one of three types, i.e., routine, leisure, or business; and it has an average accuracy of 92% 

using simulation data. 

E. Personalization Engine: Rule-Based and ML Hybrid 

The system employs a hybrid engine as a mixture of predetermined rules and an ML classifier to maintain 

trade-offs between flexibility and plainness: 

Rule-Based System 

Documents domain knowledge and deterministic logic. E.g., rules such as: If vehicle speed > 100 km/h and 

user = guest, then minimize prompts provide open control. The set of rules constitutes 75 rules and have been 

optimized to be executed 15 milliseconds [16]. 

ML Classifier 

Classifies handles it in the framework of a tree model of decisions based on three input layers (vehicle signals, 

user profile, trip metadata). Our classifier obtains F1 scores of 0.08 or more in every category, trained through 

2,400 simulated trip cases. As opposed to black-box models, the classifier can be used to present automotive 

safety auditing. The hybrid design makes personalization decisions as efficient and as traceable as possible, a 

critical requirement in regulated automotive settings. 

F. Why Onboard? Justification for Localized Processing 

The decision to execute personalization onboard rather than in the cloud is rooted in three factors: latency, 

reliability, and data sovereignty. Onboard systems offer response times up to 42% faster than cloud-dependent 

models, with guaranteed functionality even in connectivity-poor regions. In-vehicle processing also prevents 

constant data transmission, addressing privacy concerns and reducing operational cost [17]. With the 

availability of edge AI chips in modern infotainment systems, the performance gap between onboard and 

cloud models has narrowed significantly, enabling real-time adaptation with minimal computational 

overhead. This architecture provides a robust, modular foundation for delivering runtime personalization in 

IVAs. Its local processing capabilities, adaptive overlays and contextual intelligence enable a more natural 

approach and responsive interactions with drivers, paving the way to future-generation driver-assistant 

interactions. 

 

IV. METHODOLOGY AND IMPLEMENTATION 

The runtime personalization system makes use of a combination of software subsystems, sensor readings and 

run-time adaptation and adjustment. The idea was to create an end-to-end solution that would be real-time 

with driver profiles and car context data. A hybrid modular logic was employed- coupling a deterministic rule 

engine with the lightweight machine learning classification to achieve a greater adaptability without 

sacrificing the speed of processing. The following section explains the platform, data processes, model 

architecture, personalization logic, and a typical runtime execution flow [18]. 

A. Hardware and Software Platform 

The development and testing environment was set up using an embedded computing board with automotive-

grade specifications. The system was simulated on a Raspberry Pi 4B with 4GB RAM, representing a low-

power infotainment system. It was chosen to validate the feasibility of onboard runtime personalization. The 

board ran a Linux-based OS with real-time kernel extensions for low-latency processing. 

Python 3.10 served as the primary programming language for system integration, UI overlay control, and ML 

inference. The scikit-learn library was used to implement and train the decision tree classifier. For 

visualization and audio synthesis, custom overlays were built using PyQt5 for the GUI and pyttsx3 for text-

to-speech functionalities. In parallel, MATLAB R2022a was used for initial data preprocessing, driver 

behavior modeling, and statistical analysis of vehicle signals [19]. This setup allowed data cleaning, feature 

correlation, and scenario simulation to generate synthetic but realistic input data for model training and testing. 
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B. Data Acquisition and Labeling 

The system was trained and tested using a dataset consisting of 2,400 trip simulations across various driving 

conditions, user roles, and vehicle states. The data comprised structured logs of vehicle telemetry (speed, gear, 

fuel level, drive mode), trip metadata (destination type, duration), and user behavior (interaction count, 

preferred prompts). Three driver roles were defined—Primary User, Guest, and Secondary User—based on 

frequency and access rights. Trip types were categorized as Routine, Leisure, and Business. A combination 

of time-based clustering and semantic labeling was used to classify trip intent based on previous user behavior 

patterns. Manual labeling was applied to a core subset of 800 sessions to validate auto-labeling algorithms. 

Labeling accuracy reached 95% after iterative refinement, ensuring quality input for the rule engine and ML 

classifier [20]. 

C. Rule Engine vs. ML Model 

A hybrid decision-making structure was used to ensure interpretability and real-time execution. The rule 

engine comprised 75 conditional logic blocks coded in Python. Rules were developed to encode expert 

knowledge such as: 

● If user = Guest and vehicle speed > 100 km/h → suppress visual prompts 

● If trip type = Routine and fuel < 20% → proactive fuel stop suggestions 

The ML model was a decision tree classifier trained on a balanced dataset of 2,000 samples with input vectors 

of 14 features. Features included average speed, interaction density, prompt type frequency, and past route 

category. The model achieved a classification accuracy of 92% and F1 scores > 0.87 for all output classes. 

The training was performed using a 10-fold cross-validation strategy, and the final model size was under 1.5 

MB, enabling deployment on low-power processors [21]. During runtime, the ML model performs multi-class 

classification to determine the user context, while the rule engine interprets this output to select appropriate 

personalization rules. 

D. Context Classification Logic 

Context classification is central to runtime adaptation. Inputs are collected in real-time and evaluated at 1 Hz 

frequency. Context is defined as a composite of three dimensions: User Role, Determined by login credentials, 

historical usage frequency, and interface preferences. Trip Type, predicted based on destination metadata, 

time of day, and calendar entries (if available). Vehicle State, extracted from real-time CAN data including 

gear position, drive mode, and fuel level. These inputs are fed to the ML classifier, which assigns a context 

label such as: “Business Trip - Guest - High Speed” or “Routine Commute - Primary User - Low Fuel.” This 

label serves as the trigger for overlay personalization. 

E. Personalization Logic for Each Modality 

The assistant supports three output modalities—speech, visual overlays, and prompts—each controlled 

through context-dependent logic. Speech, the text-to-speech engine adapts voice tone (neutral, formal, 

friendly), tempo (slow, medium, fast), and verbosity (short-form vs. detailed). For example, during a business 

trip, responses are shortened and professional, while during leisure, the assistant adopts a relaxed tone and 

includes suggestions. Visuals, GUI elements are modified by adjusting theme, color, and information density. 

High-speed scenarios use minimalist layouts with critical alerts highlighted. For low-speed or idle states, 

entertainment and customization options are emphasized. Prompts, Proactive suggestions (e.g., fuel stations, 

route changes, reminders) are filtered by priority. A guest user on a short trip receives minimal prompts, 

whereas a primary user during a routine commute may receive navigation alternatives, weather updates, or 

reminders. Each overlay mode is independently updated based on the personalization engine’s output, 

ensuring modularity and efficient processing [22]. 

F. Runtime Execution Example Flow 

A typical runtime execution flow is initiated as soon as the driver starts the vehicle. The system performs user 

authentication and begins monitoring vehicle sensors immediately. Within the first 15 seconds, it establishes 

a preliminary context using the driver’s login profile, recent trip history, and live telemetry data. Raw features 

such as speed, time of day, destination type, and previously taken routes are fed into the onboard machine 

learning classifier. The classifier determines the current scenario, for example, “Routine Trip – Primary User 
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– Eco Mode.” Based on this output, the rule engine loads the appropriate rule set and configures the interface 

accordingly: The full cycle completes within 500 milliseconds. 

This methodology integrates computational efficiency, contextual intelligence, and modular design. By 

combining rule-based logic and machine learning, the system achieves high adaptability, low latency, and 

practical feasibility for onboard implementation in real-world automotive environments. 

 

V. EVALUATION AND RESULTS 

The evaluation of the runtime personalization system was conducted through a structured simulation-based 

environment, with controlled inputs and varied user interaction patterns. The objective was to assess system 

responsiveness, classification accuracy, adaptability across contexts, and subjective user experience. The 

performance of the onboard personalization system was benchmarked against a fixed overlay baseline system 

lacking adaptive behavior. Several metrics—latency, classification accuracy, and user satisfaction—were 

tracked and analyzed to validate the effectiveness of the proposed implementation. 

A. Evaluation Setup 

The experiment was conducted using a built-in driving simulator, which was set to behave like the real car 

signals and interaction. Simulator replicated real-time telemetry the action of speed and drive mode and gear 

position and GPS location. It also modeled user activity such as frequency of entering commands, density of 

screen interaction, and speech response. The implementation was done on Raspberry Pi 4B and the test 

environment was the same as the one employed in development with the same configuration. A sample size 

of 12 participants was picked to reflect different user roles. Both subjects went through the system in various 

trip contexts (routine, leisure, and business). Each participant was evaluated using a session that lasted 30 

minutes, including objective system log and subjective feedback at trial completion [23]. 

B. Test Scenarios 

The test conditions were designed to offer a wide scope of real driving conditions by systematically 

manipulating three fundamental parameters: user role, trip type, and vehicle context. The user roles were 

Primary, Guest, and Secondary drivers and the types of trips were Routine (including day-to-day commuting), 

Leisure, and Business. Context in vehicles was altered under Eco Mode, Sport Mode, and Traffic Congestion 

conditions. Both scenarios required the in-vehicle assistant to adapt dynamically to its behavior. In case of a 

recreation journey with a main user in eco mode, the assistant used autonomous, calm tone of voice, high-

nerve visual filters and location-sensitive suggestions. On the other hand, on a high speed business trip, with 

a guest user, it made the interface simple and suppressed extraneous prompts to limit distraction. 

C. Metrics and Measurement 

System performance was assessed using a blend of quantitative and qualitative metrics to ensure a 

comprehensive evaluation. Classification accuracy was a key indicator, with the machine learning model 

achieving an overall accuracy of 92.3% across various scenarios, and class-specific accuracy ranging from 

88.4% to 96.1%. Latency, defined as the time from sensor input acquisition to overlay rendering, averaged 

460 milliseconds, with the highest observed delay being 640 milliseconds during multi-modal updates. User 

satisfaction was measured through a post-session survey using a 5-point Likert scale, capturing feedback on 

speech clarity, visual design, and system responsiveness. The average satisfaction score was 4.3 out of 5, with 

the speech adaptation component receiving the highest rating, while visual clarity in nighttime settings 

received the lowest. A comparative analysis with a non-personalized baseline system demonstrated significant 

improvements: user engagement time increased by 28%, unnecessary prompts decreased by 35%, and 

interface usefulness improved by 31%, validating the effectiveness of personalization [24]. 

 

VI. DISCUSSION AND ANALYSIS 

The developed runtime personalization system demonstrates strong potential to transform in-vehicle assistant 

interfaces by incorporating contextual intelligence through edge computing. The discussion below critically 

interprets the findings in light of scenario adaptiveness, computational efficiency, and existing limitations, 

providing insight into both system impact and constraints. 

https://www.ijaidr.com/


 

Journal of Advances in Developmental Research (IJAIDR) 

E-ISSN: 0976-4844   ●   Website: www.ijaidr.com   ●   Email: editor@ijaidr.com 

 

IJAIDR21021555 Volume 12, Issue 2, July-December 2021 9 

 

A. Insights from Results 

The system’s ability to achieve a classification accuracy of 92.3% highlights the effectiveness of lightweight 

machine learning models when trained on contextually rich datasets. Notably, user satisfaction scores above 

4.3 across speech and prompts indicate high acceptance of adaptive modalities. The reduction in unnecessary 

prompts by 35% compared to a non-personalized baseline further validates the relevance of context-driven 

interaction filtering. These results suggest that users are more responsive and engaged when the interface 

adapts to their specific driving context, reinforcing the value of real-time personalization. 

B. Adaptiveness Across Scenarios 

The runtime system successfully adjusted to varying combinations of user roles, trip types, and vehicle states. 

It maintained stable performance across 12 participants, with class-specific accuracy remaining above 88% 

even in traffic-heavy or dynamic driving conditions. In business scenarios involving guest users, minimal 

visual prompts were presented, while in routine trips by primary users, the assistant provided informative 

overlays and proactive suggestions. Such targeted behavioral shifts confirm the robustness of the hybrid 

personalization logic across edge cases and usage diversity. This points to a potential need for finer-grained 

behavioral clustering or continuous learning to refine context detection in less structured settings. 

C. System Efficiency and Edge Suitability 

The onboard implementation maintained real-time responsiveness with an average personalization cycle time 

of 460 milliseconds. This confirms the viability of deploying adaptive systems without reliance on cloud 

connectivity, an essential requirement for latency-sensitive environments such as driving. The compact model 

size (<1.5 MB) and CPU-efficient decision logic demonstrated excellent alignment with the constraints of 

edge platforms, such as Raspberry Pi 4B. Energy consumption was within acceptable automotive-grade 

thresholds, and the Python-based logic ran without resource bottlenecks during concurrent GUI updates and 

sensor monitoring. This edge-suited architecture supports scalability to commercial infotainment hardware 

while maintaining low power overhead and high reliability [25]. 

D. Current Limitations 

Despite its strengths, the system exhibits limitations primarily related to machine learning complexity and 

input data variability. The chosen decision tree classifier, while interpretable and lightweight, may 

underperform in highly non-linear context boundaries. More advanced models like ensemble learners or 

neural networks were excluded to preserve execution speed, limiting the system's depth of behavioral 

understanding. Data in a real-world CAN bus may include some latency, noise or missing values, which can 

compromise the classification accuracy. Determination of users by credentials and frequency is also assumed 

in the system and might not represent transient user behavior completely.  

 

VII. CONCLUSION AND FUTURE WORK 

The work on this runtime personalization system of vehicular assistants has shown real-time adaptation on 

edge using context of vehicles and driver profiles is technically viable and functionally effective, as well. This 

system met high-classification precision (92.3%), and low-latency adaptation cycles (~460 milliseconds), 

making it adaptable to fluid communication without cloud-investment. The assistant dynamically customized 

speed, visuals, and prompts depending on user roles, roles, and states of trips by embedding lightweight 

machine learning models with rule-based logic. The main lesson learned is that the user experience may be 

greatly improved in the vehicle setting when the infotainment systems become context-aware. The fact that 

the assistant can limit the irrelevant triggers by a third and elevate satisfaction rates among users shows the 

worth in providing valuable information without permeating the driver. Such personalization will help in 

safer, more intuitive interactions and is part of the wider trend toward human-centric automotive design. 

However, as we look forward, there are a number of opportunities to take personalization further. The system 

responsiveness and understanding of emotion can be improved by real-time driver mood, voice emotion 

analysis, and the use of gestures as input.. Strategically, the future plan will center around personalization on 

a large scale, and it will involve the generalization of models across a variety of different drivers and vehicle 

types and support as having real-time performance. Connection to Vehicle-to-Everything (V2X) systems may 
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enable the assistant to respond depending on the traffic, weather, or the other infrastructure signs, and provide 

a more connected and predictive driving experience.  
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