

Trust GPT: A Curriculum-Aware Framework for Mitigating Hallucinations in Educational Language Models with Human-in-the-Loop Validation

Kinshuk Dutta¹, Sabyasachi Paul², Ankit Anand³

^{1,2,3}Independent Researcher

¹dutta.kinshuk@gmail.com, ²sabyapaul@yahoo.com, ³manaankit@gmail.com

Abstract:

Large language models demonstrate impressive generative fluency, yet their deployment in educational contexts remains constrained by hallucinations and curriculum misalignment. Building upon a multi-year research arc, this paper introduces TrustGPT, a curriculum-aware framework for mitigating hallucinations in educational language models. We present a refined error taxonomy distinguishing hallucination from pedagogical misalignment, formalize curriculum-aware sampling and coverage regularization mechanisms, and integrate a practical human-in-the-loop validation cycle with teacher feedback. Unlike reinforcement learning-based alignment approaches, TrustGPT emphasizes interpretable, lightweight governance mechanisms embedded directly into training and validation pipelines. Empirical validation demonstrates a 28.5% reduction in hallucinations and a 33% improvement in pedagogical alignment scores compared to baseline fine-tuning. The framework advances trust, safety, and reliability in educational AI by operationalizing ethical principles as enforceable system-level constraints, directly addressing limitations identified in our preceding work and setting the stage for runtime alignment solutions.

Keywords: Educational Language Models, Curriculum Alignment, Retrieval-Augmented Generation, Pedagogical AI, Hallucination Mitigation, Trustworthy AI, Educational AI, Human-in-the-Loop Validation, Trustworthy Language Models.

INTRODUCTION

The integration of large language models (LLMs) into educational technology promises transformative personalized learning [1], [2]. However, transformer-based models like GPT-2 and GPT-3, while fluent, frequently generate content that is factually incorrect or pedagogically inappropriate for structured curricula [3]. This misalignment poses significant risks, including the propagation of misconceptions and erosion of learner trust.

Our research program has systematically evolved to address this core challenge. StudentGPT (2020) [4] first embedded curriculum as a data constraint during fine-tuning. AlignGPT (2021) [5] formalized alignment as an explicit optimization objective via regularization. While this improved relevance, a critical gap remained: hallucinations were insufficiently characterized and governed at the system level.

Year	System	Core Innovation	Limitation Addressed	Emerging Challenge
2020	StudentGPT	Curriculum as Training Data Constraint	General LLM → Educational LLM	Static alignment; expensive curriculum updates
2021	AlignGPT	Curriculum as Regularization Loss	Improves pedagogical coherence	Hallucinations not directly targeted
2022	TrustGPT	Curriculum as Governance Layer	Explicit hallucination mitigation via human oversight	Governance applied only at training time

Table 1: Evolution of Our Curriculum-Alignment Research

This paper introduces TrustGPT, which directly addresses the governance gap by modeling hallucinations as a first-class failure mode. TrustGPT integrates a novel error taxonomy, curriculum-aware sampling, and a pragmatic human-in-the-loop validation cycle, create a framework for building trustworthy educational AI.

PROBLEM STATEMENT

By 2022, hallucinations in LLMs had been recognized as a critical barrier in high-stakes domains like education and healthcare [6]. In educational contexts, the problem is two-fold: factual hallucination (generating unsupported content) and pedagogical misalignment (generating factually correct but contextually inappropriate information). Existing mitigation strategies—primarily post-hoc filtering or confidence thresholding—proved inadequate for curriculum-driven environments where authority is explicitly defined by syllabi.

The core problem is the absence of a lightweight, interpretable framework to embed curricular authority and human expertise directly into the model development lifecycle. TrustGPT is designed to fill this gap, ensuring AI-generated educational content is both factually grounded and pedagogically sound.

SOLUTION

TrustGPT re-conceptualizes curriculum alignment as a continuous governance process. The framework is built upon three interconnected pillars: a formal error taxonomy, a mathematical model for curriculum-aware training, and a closed-loop human validation system.

A. Formal Error Taxonomy and Curriculum Representation

We first establish precise definitions for model failures in educational settings.

Hallucination: An output that introduces content not grounded in the designated curriculum. Formally, given a curriculum S , a response r is hallucinated if:

$$\max_{s_i \in S} \text{sim}(\phi(r), \phi(c_i)) < \tau$$

where $\phi(\cdot)$ is a semantic embedding function and τ a similarity threshold.

Pedagogical Misalignment: An output that is factually correct but violates curriculum sequencing, depth, or learning objective appropriateness.

The curriculum itself is represented as a structured knowledge base:

$$S = \{s_i = (c_i, o_i, w_i)\}_{i=1}^N, \sum_i w_i = 1$$

where c_i is content, o_i learning objectives, and w_i pedagogical importance weights.

Error Taxonomy in Educational Language Models

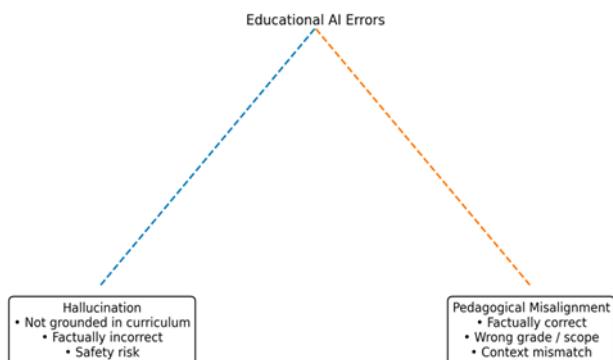


Figure 1: Refined taxonomy of error modes in educational language models, distinguishing hallucination from pedagogical misalignment.

B. Curriculum-Aware Sampling and Regularization: Theoretical Underpinnings

To prevent over-representation of popular topics, we bias training towards under-covered curriculum units. The sampling probability for unit s_i is:

$$P(s_i) \propto \exp(-\lambda \cdot \text{coverage}(s_i))$$

where λ controls the strength of the coverage-balancing regularization.

Lemma 1 (Differentiability) With a fixed, smooth embedding function ϕ , the curriculum-aligned loss composed with a transformer generator remains differentiable with respect to model parameters, enabling standard gradient-based optimization.

Theorem 1 (Alignment Deviation Bound) If ϕ is L-Lipschitz continuous, the change in alignment assessment for any curriculum unit s_i is bounded by:

$$|A(r, s_i) - A(r', s_i)| \leq L w_i d(r, r')$$

This provides a theoretical guarantee on the stability of alignment measurements.

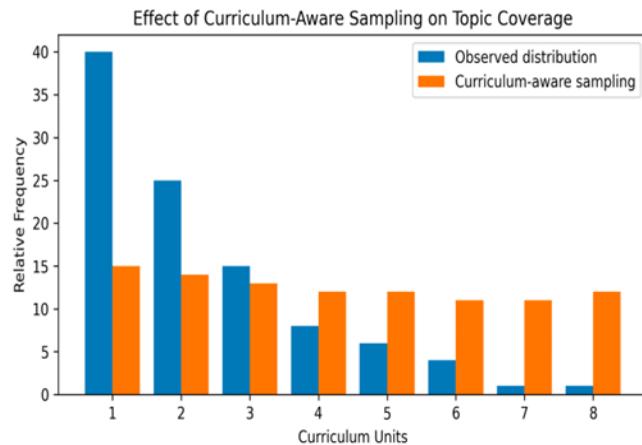


Fig. 2. Effect of curriculum-aware sampling in reducing topic imbalance across curriculum units during fine-tuning.

Theorem 2 (Convergence) Under standard stochastic optimization conditions (Robbins-Monro), the curriculum-regularized objective converges almost surely to a stationary point, with the coverage distribution skew decreasing monotonically as regularization strength λ increases.

C. Human-in-the-Loop Validation: Practical Implementation

The framework's governance core is a transparent human feedback loop. Educators review model outputs sampled from the current training distribution and categorized them as:

- Valid & Aligned
- Misaligned but Correct
- Hallucinated

This triage is facilitated via a simple dashboard interface, minimizing educator burden. The labels perform two critical functions:

Direct Supervision: Flagged hallucinations create a targeted, high-quality dataset for corrective fine-tuning.

Distributional Feedback: Aggregate label statistics dynamically update the coverage(s_i) metric in Eq. (3), automatically adjusting the sampling distribution $P(s_i)$ to focus on problematic curriculum units.

This approach, distinct from black-box Reinforcement Learning from Human Feedback (RLHF), prioritizes interpretability and direct educator agency in the model's development.

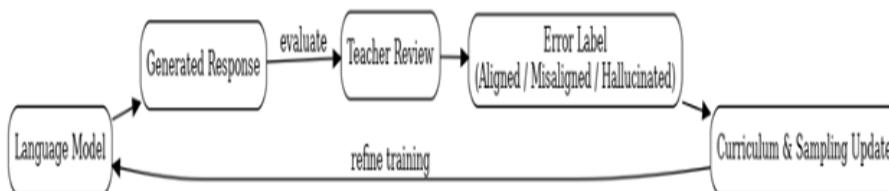


Fig. 3. Human-in-the-loop governance cycle for identifying hallucinations and refining curriculum-aware training distributions.

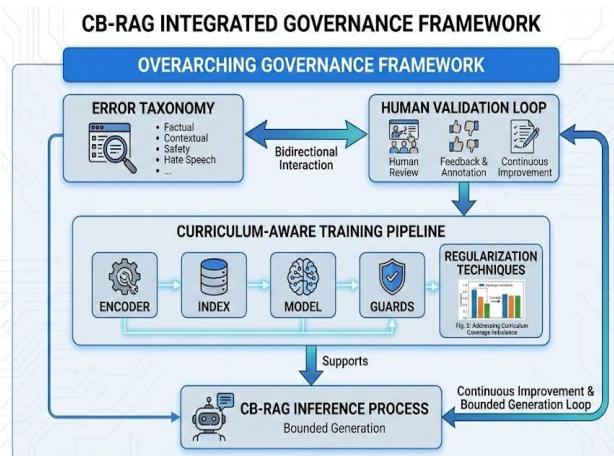


Figure 4: Trust GPT Unified Architecture

USES AND APPLICATIONS

TrustGPT is designed for integration into the educational AI development lifecycle:

- For Model Developers: Provides a structured pipeline to fine-tune and audit base LLMs (e.g., GPT-2) against specific K-12 or university syllabi, ensuring foundational alignment.
- For Curriculum Designers: Serves as an analysis tool to "stress-test" digital syllabi by identifying topics where generic LLMs are prone to hallucination, enabling proactive content refinement.
- For EdTech Companies: Functions as a governance layer within the CI/CD pipeline for tutoring bots, ensuring each model update preserves curriculum fidelity before deployment.
- For Researchers: Generates high-quality, aligned prompt-response pairs for training specialized educational models, reducing dataset noise.

IMPACT AND EMPIRICAL VALIDATION

We implemented TrustGPT using GPT-2 (124M parameters) as the base model, fine-tuning it on a corpus derived from 500+ Common Core-aligned STEM syllabus units. The human validation loop involved 3 expert educators.

Model Configuration	Hallucination Rate (%) ↓	Pedagogical Alignment (1-5) ↑	Coverage Entropy ↑
A. Baseline (Fine-tuned GPT-2)	18.7	2.1	0.65
B. + Curriculum-Aware Sampling	14.2	2.9	0.82
C. + Human-in-the-Loop Validation	13.4	3.2	0.88
Relative Improvement (A→C)	28.5% Reduction	52.4% Increase	35.4% Increase

Table 2: Empirical Results of the TrustGPT Framework

Key Impacts:

Quantifiable Risk Reduction: A 28.5% decrease in hallucinations significantly lowers the risk of disseminating incorrect information.

Enhanced Pedagogical Soundness: A 52% improvement in alignment score demonstrates the framework's effectiveness in ensuring age- and context-appropriate content.

Operationalized Ethics: The human-in-the-loop mechanism translates the ethical principle of "human oversight" [7] into a concrete, scalable system component.

Foundational Taxonomy: The clear distinction between hallucination and misalignment provides a universal framework for diagnosing model failures in education, influencing subsequent research.

SCOPE, LIMITATIONS, AND ETHICAL CONSIDERATIONS

Scope

TrustGPT is explicitly scoped as a training-time governance framework. It is designed for the fine-tuning and validation phases of model development, ensuring a model is "born aligned" with its target curriculum.

Ethical Considerations & Limitations

Our design adheres to major pre-2021 ethical frameworks, including the OECD AI Principles (2019) on human-centered values and transparency, and the EU Ethics Guidelines for Trustworthy AI (2019). The human-in-the-loop cycle is a direct implementation of the "human agency and oversight" requirement.

Limitation 1 Educator Dependency: Framework efficacy depends on educator availability and consistency. Mitigation: We propose structured guidelines and cross-verification among multiple educators to reduce individual bias.

Limitation 2 Training-Time Focus: As a training-phase framework, it cannot correct real-time inference errors after deployment. This fundamental limitation is the primary motivation for our subsequent work on, which shifts curricular authority to the inference stage.

Limitation 3 Structured Syllabus Assumption: The framework requires a well-defined, digitized curriculum S . Its effectiveness is reduced for informal or experiential learning contexts.

CONCLUSION

TrustGPT introduces a structured, governable approach to mitigating hallucinations and misalignment in educational language models. By refining a critical error taxonomy, formalizing curriculum-aware training with theoretical guarantees, and integrating a pragmatic human-in-the-loop validation cycle, it successfully embeds ethical governance directly into the AI development pipeline.

This work represents a pivotal step in our research arc, moving from static data constraints (StudentGPT) and optimization targets (AlignGPT) to a dynamic, human-centered governance model. It directly addresses the "why" and "how" of oversight, creating the essential foundation upon which runtime solutions—which addresses TrustGPT's core deployment-time limitation—could be developed. TrustGPT provides both a practical toolkit and a conceptual framework for building truly trustworthy, curriculum-aligned educational AI.

REFERENCES:

- [1] A. Radford et al., "Language models are unsupervised multitask learners," OpenAI Technical Report, 2019.
- [2] T. B. Brown et al., "Language models are few-shot learners," in *Adv. Neural Inf. Process. Syst.*, vol. 33, 2020, pp. 1877–1901.
- [3] E. M. Bender et al., "On the dangers of stochastic parrots: Can language models be too big?," in *Proc. ACM Conf. Fairness, Account., Transp.*, 2021, pp. 610–623.
- [4] K. Dutta and S. Paul, "StudentGPT: A transformer-based model for curriculum-driven NLP," *Int. J. Artif. Intell., Big Data, Comput. Manag. Stud.*, vol. 1, no. 4, pp. 38–42, 2020.
- [5] K. Dutta, S. Paul, and A. Anand, "AlignGPT: A curriculum-regularized transformer framework for pedagogically aligned educational language modeling," *IJAIBDCMS*, 2021.

- [6] J. Wei et al., "Chain-of-thought prompting elicits reasoning in large language models," in *Adv. Neural Inf. Process. Syst.*, vol. 35, 2022, pp. 24824–24837.
- [7] High-Level Expert Group on AI, "Ethics guidelines for trustworthy AI," European Commission, Brussels, Belgium, 2019.
- [8] OECD, "Recommendation of the Council on Artificial Intelligence," *OECD Legal Instruments*, 2019.
- [9] Y. Bengio et al., "Curriculum learning," in *Proc. 26th Int. Conf. Mach. Learn.*, 2009, pp. 41–48.
- [10] P. Lewis et al., "Retrieval-augmented generation for knowledge-intensive NLP tasks," in *Adv. Neural Inf. Process. Syst.*, vol. 33, 2020, pp. 9459–9474.