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Abstract 

We evaluated the effectiveness of transfer learning compared to fully trained networks for 

histopathological image classification, using three pre-trained models: VGG16, VGG19, and 

ResNet50. Their performance was analyzed in the context of magnification-independent breast 

cancer classification. Additionally, we assessed how varying the training–testing data split impacts 

model performance. Among the tested configurations, the fine-tuned VGG16 model combined 

with a logistic regression classifier achieved the highest accuracy of 93.50%, an AUC of 96.00%, 

and an average precision score (APS) of 96.05% using 85%–15% train–test split. Future work 

may explore layer-wise fine-tuning and alternative weight initialization strategies to further 

enhance performance. 
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1. Introduction 

The pink ribbon has become a universal symbol in the medical community to raise awareness about 

breast cancer. Breast cancer remains one of the leading causes of mortality among women [1]. Several 

high-risk factors are associated with the development of this disease, including genetic mutations in the 

BRCA1 and BRCA2 genes, obesity, use of birth control pills, irregular menstrual cycles, and prolonged 

exposure to radiation therapy and estrogen [2–4]. These factors can trigger mutations at the cellular 

level, resulting in uncontrolled cell proliferation. 

One of the earliest symptoms of breast cancer is breast soreness, which can become life-threatening 

if not detected at an early stage [38]. Additional initial symptoms may include skin irritation, redness, 

swelling, and pain, which can progress to more severe signs such as nipple erosion or unexpected watery 

discharge [3,4]. Therefore, early detection is crucial for enabling timely and effective treatment, 

ultimately improving the chances of survival [5]. 

Common techniques used for breast cancer screening and monitoring include mammography, 

magnetic resonance imaging (MRI), ultrasound, positron emission tomography (PET), thermography, 

and surgical biopsy [4,6–8]. However, interpreting the data generated from these methods is often 

complex due to overlapping clinical features among various cancer types, making accurate analysis 

challenging. The process of analyzing such data is not only time-consuming and labor-intensive but also 

critical for reaching a differential diagnosis. 

https://www.ijaidr.com/


 

Journal of Advances in Developmental Research (IJAIDR) 

E-ISSN: 0976-4844   ●   Website: www.ijaidr.com   ●   Email: editor@ijaidr.com 

 

IJAIDR22021432 Volume 13, Issue 2, July-December 2022 2 

 

To address these challenges, automation in diagnostic workflows has become essential to reduce the 

workload on radiologists and pathologists. In this context, machine learning has emerged as a powerful 

tool, offering dependable and intelligent solutions capable of automating several diagnostic tasks [9]. 

Among various machine learning techniques, deep neural networks (DNNs) have garnered 

significant attention due to their ability to automatically extract features and perform hierarchical 

representation learning [10–12]. The rise in computational capabilities has further fueled their 

widespread adoption [13]. A prominent variant of DNNs, the convolutional neural network (CNN), is 

extensively used in computer vision applications, primarily because of its weight-sharing and local 

connectivity properties [14–17]. These characteristics enable CNNs to function as localized filters that 

can detect consistent patterns across the entire image while requiring fewer trainable parameters. 

CNNs excel at representation learning, gradually combining low-level features into complex high-

level abstractions to ultimately classify images. However, training CNNs from scratch can be 

challenging, as it demands a large volume of labeled data to achieve high performance [18,19]. 

Additionally, powerful graphical processing units (GPUs) are necessary to expedite the training process, 

given the computational intensity involved in handling large datasets [18]. Moreover, training CNNs is 

often complex due to issues like convergence instability and overfitting, which necessitate careful tuning 

of hyperparameters to ensure balanced learning across all layers [20]. 

Transfer learning presents a viable alternative to full training. In this approach, a model trained on 

one task is fine-tuned for a different yet related task. Transfer learning can be implemented either as a 

baseline model or as a feature extractor [21–24]. When used as a baseline, the pre-trained network’s 

parameters are adapted to the new task [21]. Alternatively, when acting as a feature extractor, the 

network generates features from input data which are then used to train a separate classifier [22]. 

This study explores a critical question in the context of breast cancer histopathological image 

classification: Which performs better— a fully trained CNN or a fine-tuned pre-trained model— for 

magnification-independent classification? To answer this, two primary experiments were conducted: (a) 

magnification-invariant classification of breast cancer histopathological images using the BreakHis 

dataset (https://web.inf.ufpr.br/vri/databases/breast-cancer/histopathological-database-breakhis/), and (b) 

an evaluation of model performance across three different training–testing data splits. 

For each experiment, the performance of fine-tuned pre-trained models was compared against that of 

CNNs trained from scratch. This work was inspired by the study conducted by Tajbakhsh et al., who 

highlighted the lack of a comparative analysis between fully trained and fine-tuned CNNs on both 

histopathological and magnetic resonance imaging modalities [25]. Our goal is to extend their research 

by providing such a comparison specifically for histopathological imaging. 

The primary objective of this paper is to evaluate the efficacy of transfer learning versus training 

from scratch in the classification of breast cancer using histopathological images. Additionally, the study 

aims to identify the most effective pre-trained model for this task. To the best of our knowledge, this is 

the first work to conduct such a comparative analysis within the domain of histopathological imaging. 

 

2. Material and method used 

In this study, three widely recognized pre-trained deep convolutional neural network (CNN) 

models—VGG16, VGG19, and ResNet50—are employed for both full training (from scratch) and 

transfer learning approaches. Due to the complex nature of classifying breast cancer histology images, 

deep architectures are essential to effectively capture and learn relevant features. The selected models 
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are particularly suited for this task because of their depth and proven performance across various 

challenging computer vision problems. 

VGG16 and VGG19, for instance, gained significant recognition by securing top positions in the 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC-2014), ranking first in localization and 

second in classification. These models have also demonstrated strong generalization capabilities on other 

datasets such as Caltech-101, Caltech-256, and PASCAL VOC 2007 and 2012 [26,27]. Similarly, 

ResNet50, a residual network architecture, won the ILSVRC-2015 and even outperformed human 

accuracy in classification tasks. A key advantage of ResNet50 is its ease of training, as it learns residual 

mappings rather than direct features, facilitating better gradient flow in deep networks [28]. 

In this work, all three pre-trained CNNs are utilized as feature extractors. Specifically, the 

activations from the layers preceding the final fully connected layer are extracted and used to form 

feature vectors. These vectors are then used to train a new classifier—logistic regression (LR)—to 

perform the final classification. This approach differs from that of Tajbakhsh et al. [25], where fine-

tuning was applied layer-wise using only a single pre-trained model, AlexNet. Furthermore, the current 

study also examines how varying training–testing data proportions influence the performance of both 

fully trained and fine-tuned models, a factor also considered in [25]. 

 

2.1. Dataset 

In the medical imaging domain, datasets often comprise a limited number of annotated samples 

due to the complexity and cost of data acquisition. Accessing a large-scale, well-annotated dataset is 

critical for developing robust and generalizable models, as such datasets provide a standardized 

benchmark for model validation and comparison. 

For this study, the publicly available BreakHis dataset is utilized. This dataset was developed 

through a collaboration with the Prognostics and Diagnostics (P&D) Laboratory in Parana, Brazil 

[14,35]. It includes a total of 7,909 breast cancer histopathology image samples collected from 82 

patients and captured under four different magnification levels. The dataset is categorized into two main 

classes: benign and malignant, comprising 2,480 and 5,429 samples, respectively. A sample 

visualization of the dataset is shown in Figure 1. 

 

Figure 1. Breast Cancer Histopathological Images from BreakHis Dataset of a Patient Suffered 

from Papillary carcinoma (Malignant) with four magnification levels (a) 40x, (b) 100x (c) 200x and 

(d) 400x. [10]. 
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2.2. Data augmentation 

A major challenge in developing robust computer-aided diagnosis (CAD) systems lies in dealing 

with unbalanced and limited datasets. To address this limitation, data augmentation is commonly used in 

deep learning models to artificially expand the training data. Techniques such as flipping, cropping, scal-

ing, rotation, interpolation, translation, and noise injection have been widely applied in prior studies 

[15,29,30]. However, augmentation methods effective for natural images may not be directly applicable 

to medical imaging, as many medical images follow a top-down interpretation paradigm, unlike the bot-

tom-up approach used in natural images. Moreover, pixel intensity values often carry critical diagnostic 

information in medical images, making the selection of augmentation strategies even more sensitive. 

Thus, it is essential to tailor augmentation techniques based on the specific characteristics of the 

dataset. In the case of histopathological images, which inherently exhibit rotation and reflection sym-

metry [31], using inappropriate augmentation may inadvertently discard crucial discriminative features. 

Therefore, in this study, only rotation is employed as the augmentation technique for both training-from-

scratch and transfer learning approaches. Images are rotated around their center at three angles: 90°, 

180°, and 270°. In addition to enriching the dataset, this augmentation strategy also helps mitigate over-

fitting—a common challenge in training machine learning models on limited data [32]. 

 

2.3. Magnification independent classification 

The magnification factor plays a vital role in the interpretation and analysis of histological imag-

es. It alters the size of visualized structures, enabling more comfortable and detailed observation [33]. 

While histological images contain a wide range of tissue types, analyzing these tissues becomes increas-

ingly difficult at lower magnification levels due to reduced clarity and detail. Additionally, capturing 

images at varying magnification levels introduces variability in background textures and image composi-

tion, making it challenging for automated computer-aided diagnosis (CAD) systems to consistently ex-

tract discriminative features across different magnifications. 

To address this, many previous studies have restricted their classification tasks to a single magni-

fication level, thereby minimizing background variation [34,35]. Other works have considered multi-

magnification datasets but implemented separate classifiers tailored to each magnification level [36,37]. 

However, such magnification-dependent approaches require multiple stages of training and prior 

knowledge of the magnification level, making them less scalable. Furthermore, the introduction of imag-

es with previously unseen magnification factors often degrades model performance, highlighting a key 

limitation of these strategies. 

Therefore, it is imperative to develop a magnification-independent CAD system capable of general-

izing across varying magnification levels and adapting to new ones without significant loss in accuracy 

or diagnostic reliability. 

 

3. Results & Discussion 

In this study, we present consistent and reliable results for the application of breast cancer classifica-

tion using histopathological imaging. A balanced dataset was employed for both full training and fine-

tuning of convolutional neural networks (CNNs). To achieve dataset balance, the class with a greater 

number of samples (malignant) was downsampled to match the number of samples in the other class 

(benign). All experiments were conducted on a system with the following specifications: Intel(R) 
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Core(TM) i7-7500U CPU @ 2.90 GHz, NVIDIA GeForce 940MX GPU, Windows 10 OS, 8 GB RAM, 

and implemented using TensorFlow and Keras libraries. 

To evaluate classification performance, the dataset was divided into training and testing subsets us-

ing three different ratios: 85%–15%, 80%–20%, and 75%–25%. This partitioning strategy is a standard 

practice in neural network experiments to assess model generalization. Each configuration was tested for 

both fully-trained and fine-tuned networks, with training times for each experiment ranging from 1 to 2 

hours. 

Performance metrics, including precision, recall, and F1-score, were calculated separately for each 

class, followed by averaging to facilitate comparison. Additionally, Receiver Operating Characteristic 

(ROC) analysis and the Area Under the Curve (AUC), along with the Average Precision Score (APS), 

were used to comprehensively evaluate classification performance. 

For full training, the CNNs were initialized with random weights and trained on the BreakHis da-

taset from scratch, using only the model architecture of pre-trained networks. In contrast, the transfer 

learning approach retained the pre-trained weights, assuming the networks had already learned robust 

feature representations. 

 

Table 1 Performance Analysis for Histopathological Image Classification using Fine-tuned Pre-

trained Network (VGG16, VGG19 and ResNet50) 

Classifier Training-

Testing Data 

Splitting 

Class Type Precision F1 

Score 

Recall Accuracy AUC APS 

VGG16  85%-15% B 

M 

Avg/Total 

0.92 

0.92 

0.92 

0.92 

0.92 

0.92 

0.92 

0.94 

0.93 

93.50% 96.00% 96.05% 

 80%-20% B 

M 

Avg/Total 

0.93 

0.94 

0.93 

0.93 

0.94 

0.93 

0.93 

0.92 

0.92 

93.40% 93.95% 95.20% 

 75%-25% B 

M 

Avg/Total 

0.93 

0.93 

0.93 

0.93 

0.92 

0.92 

0.92 

0.91 

0.92 

92.20% 93.49% 94.34% 

VGG19 85%-15% B 

M 

Avg/Total 

0.88 

0.93 

0.90 

0.91 

0.90 

0.90 

0.93 

0.90 

0.91 

90.00% 90.45% 91.27% 

 80%-20% B 

M 

Avg/Total 

0.89 

0.90 

0.90 

0.90 

0.91 

0.90 

0.91 

0.91 

0.91 

89.50% 90.45% 91.13% 

 75%-25% B 

M 

Avg/Total 

0.90 

0.90 

0.90 

0.91 

0.90 

0.90 

0.91 

0.91 

0.91 

90.40% 92.20% 90.38% 

ResNet50 85%-15% B 

M 

Avg/Total 

0.77 

0.81 

0.79 

0.79 

0.80 

0.79 

0.81 

0.80 

0.80 

79.40% 79.39% 82.03% 

 80%-20% B 0.80 0.79 0.80 78.90% 79.23% 80.56% 
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M 

Avg/Total 

0.81 

0.79 

0.80 

0.79 

0.80 

0.80 

 75%-25% B 

M 

Avg/Total 

0.78 

0.80 

0.79 

0.79 

0.78 

0.79 

0.81 

0.80 

0.80 

78.73% 79.12% 79.09% 

 

Table 2 Performance Analysis for Histopathological Image Classification using Full-trained Net-

work (VGG16, VGG19 and ResNet50) 

Classifier Training-

Testing Data 

Splitting 

Class Type Precision Recall F1 

Score 

Accuracy AUC APS 

VGG16 85%-15% B 

M 

Avg/Total 

0.63 

0.66 

0.64 

0.64 

0.64 

0.64 

0.64 

0.65 

0.64 

64.40% 75.65% 76.80% 

 80%-20% B 

M 

Avg/Total 

0.63 

0.63 

0.63 

0.63 

0.64 

0.63 

0.63 

0.63 

0.63 

61.20% 75.95% 75.22% 

 75%-25% B 

M 

Avg/Total 

0.66 

0.62 

0.64 

0.60 

0.68 

0.64 

0.63 

0.65 

0.64 

62.73% 75.49% 73.29% 

VGG19  85%-15% B 

M 

Avg/Total 

0.50 

0.60 

0.55 

0.87 

0.19 

0.52 

0.64 

0.29 

0.46 

53.40% 75.85% 72.27% 

 80%-20% B 

M 

Avg/Total 

0.57 

0.65 

0.61 

0.76 

0.43 

0.60 

0.65 

0.52 

0.59 

55.40% 74.76% 73.13% 

 75%-25% B 

M 

Avg/Total 

0.81 

0.50 

0.66 

0.02 

0.99 

0.50 

0.04 

0.66 

0.35 

53.21% 75.14% 75.38% 

ResNet50  85%-15% B 

M 

Avg/Total 

0.77 

0.80 

0.79 

0.78 

0.78 

0.79 

0.79 

0.79 

0.79 

74.40% 73.39% 73.03% 

 80%-20% B 

M 

Avg/Total 

0.79 

0.80 

0.79 

0.80 

0.78 

0.79 

0.79 

0.79 

0.79 

73.90% 74.23% 74.56% 

 75%-25% B 

M 

Avg/Total 

0.70 

0.81 

0.80 

0.82 

0.78 

0.80 

0.80 

0.79 

0.80 

78.53% 75.12% 75.09% 

 

Tables 1 and 2 summarize the classification results of both transfer learning and full training for 

the VGG16, VGG19, and ResNet50 models. The models were evaluated on their ability to classify his-

topathological breast images into benign (B) and malignant (M) categories. From Table 1, it is evident 

that the fine-tuned VGG16 network significantly outperformed ResNet50, while VGG16 and VGG19 
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Journal of Advances in Developmental Research (IJAIDR) 

E-ISSN: 0976-4844   ●   Website: www.ijaidr.com   ●   Email: editor@ijaidr.com 

 

IJAIDR22021432 Volume 13, Issue 2, July-December 2022 7 

 

yielded comparable performance. ResNet50, when used in transfer learning, exhibited poor generaliza-

tion on the BreakHis dataset, likely due to overfitting—a result of its high model capacity. This issue 

could potentially be mitigated by freezing additional layers to reduce effective model complexity, a solu-

tion proposed in [25] but not explored in this work due to space constraints. We plan to address this in a 

future extended version of the paper. 

In contrast, for full training, ResNet50 demonstrated superior performance over VGG16 and 

VGG19. Table 2 indicates that both VGG16 and VGG19 were biased toward one class, as reflected in 

the imbalanced recall values. ResNet50, however, showed balanced sensitivity across both classes, mak-

ing it more effective in the full-training scenario. 

To analyze the effect of training data size, the models were tested with three different training–

testing splits. The impact of dataset size on CNN performance was assessed using ROC curves and AUC 

values, as shown in Figures 2–4. For the 85%–15% split (Figure 2), pre-trained VGG16 (AUC: 96.00%) 

and VGG19 (AUC: 90.45%) outperformed their fully-trained counterparts—VGG16 (AUC: 75.65%) 

and VGG19 (AUC: 75.85%). While the pre-trained ResNet50 (AUC: 79.39%) was slightly outper-

formed by its fully-trained version (AUC: 73.39%), the margin was minimal. Similar trends were ob-

served for the 80%–20% and 75%–25% splits (Figures 3 and 4). 

Across these experiments, the performance of the fine-tuned VGG16, VGG19, and ResNet50 

networks remained relatively stable despite reductions in training data size. All three models performed 

well with 85% training data, but full training yielded mixed results. For instance, VGG19 performed best 

at the 80%–20% split, while ResNet50 and VGG16 showed consistent performance across all splits. The 

deviation in VGG19’s performance may be attributed to its class sensitivity, which varied depending on 

the data split—favoring benign samples in the 85%–15% split and malignant samples in the 75%–25% 

split. 
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Figure 2ROC analysis for breast cancer classification with 85%–15% trainingandtestingsetsplit-

ting  (a)Fine-tuned pre-trained VGG16 (b)Fine-tuned pre-trained VGG19 (c)Fine-tuned pre-

trained ResNet 50 (d)Fully-trainedVGG16 (e)Fully-trained VGG19 and (f)Fully-trained ResNet50 

 

Figure 3 ROC analysis for breast cancer classification with 80%–20% training and testing set 

splitting (a)Fine-tuned pre-trained VGG16 (b)Fine-tuned pre-trained VGG19 (c)Fine-tuned pre-

trained ResNet50 (d)Fully-trained VGG16 (e)Fully-trained VGG19 and (f)Fully-trainedResNet50 
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Figure: 4 ROC analysis for breast cancer classification with 75%–25% training and testingset 

splitting (a) Fine-tuned pre-trained VGG16 (b)Fine-tuned pre-trained VGG19 (c)Fine-tuned pre-

trained ResNet50 (d)Fully-trained VGG16 (e)Fully-trained VGG19 and (f)Fully-trained ResNet50 

In conclusion, this study demonstrates that transfer learning offers a highly effective approach for 

breast cancer classification using histopathological images, particularly when training data is limited. It 

consistently outperforms full training across various data splits, validating its robustness and potential 

for real-world medical applications. 

4. Conclusions and future directions 

This study explores the feasibility of transferring learned knowledge from natural images to histopatho-

logical images by leveraging three pre-trained convolutional neural networks—VGG16, VGG19, and 

ResNet50—through both fine-tuning and full-training strategies. In the transfer learning approach, these 

pre-trained models were used as feature extractors, and the resulting features were used to train a logistic 

regression classifier. 

 

Key findings from this work include: 

• Superior performance with transfer learning: Among all the models and training strategies, the 

fine-tuned VGG16 combined with a logistic regression classifier achieved the highest performance, 

recording an accuracy of 93.50%, an AUC of 96.00%, and an Average Precision Score (APS) of 

96.05% for the 85%–15% training–testing split. 

• Robustness to training data size: The fine-tuned models demonstrated greater resilience to varia-

tions in training data size compared to fully-trained models. Their performance remained relatively 

stable even when the amount of training data was reduced. 

• Class bias impacts model effectiveness: A model biased toward a specific class significantly com-

promises classification performance. Therefore, achieving balanced sensitivity across all classes is 

critical for reliable diagnostics. 

• Network capacity influences generalization: The capacity of the model plays a crucial role in its 

effectiveness. Excessively large networks tend to overfit, while overly simplistic architectures may 

underfit. Optimal network complexity should be tailored to the specific application. 

 

For future work, several enhancements can be considered to improve model performance further. These 

include layer-wise fine-tuning, the use of larger and more diverse datasets, advanced data augmentation 

techniques—such as conditional generative adversarial networks (GANs) and deep photo style trans-

fer—and improved weight initialization methods like Xavier, He, MSRA, or Gaussian distributions dur-

ing full training. 

 

Conflict of interest: The authors declare that they have no conflict of interests in this paper. 
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