
AI-Driven Closed-Loop Solids Control for Ultra-Low Waste Drilling

Anthony Igbigbi

Solids Control & Waste Management Engineer

Abstract:

The global drilling industry is experiencing larger and larger pressure to minimize environmental impact and still make the operation work efficiently, cost-effective, and of course, comply with the regulations. Conventional solids control systems, both manual and rules based automation are often poor at meeting ultra low waste drilling targets in complex geologic environments. Inefficiencies with cuttings separation, slow responses to process deviations, and inconsistent waste management practices result in excessive losses with drilling fluids, increased volumes of waste to be disposed, and non-productive time. In face of these challenges, artificial intelligence (AI) driven closed-loop solids control systems have become a groundbreaking solution to guarantee optimization of the management of drilling wastes in real-time. This article looks at the role that AI-driven closed-loop solids control play in enabling ultra-low waste drilling operations. Based on the systems engineering theory, fluid mechanics theory of drilling fluids and the latest work on artificial intelligence in industry, the research presents the idea of integrating machine learning, sensors fusion, and real-time feedback loops in solids control workflows to improve the separation outcome, minimise waste generation and improve sustainability during drilling oil and gas production. The research takes a conceptual-analytical approach backed by case evidence from the industry to measure system architecture, control and performance results.

The results indicate that the AI-enabled closed-loop solids control allows significant improvement in waste minimization by dynamically adjusting (in response to changing drilling conditions) equipment parameters like shaker screen selection or centrifuge speed and fluid density. Beyond the environmental benefits, operational benefits are also provided, such as better rate of penetration, lower dilution costs and better regulatory compliance. The article concludes by providing tenants, context of the main technical, organizational, and regulatory considerations of the scalability of AI-driven solids control systems for offshore and onshore drilling operations.

Keywords: AI-driven drilling; closed-loop control; solids control systems; ultra-low waste drilling; drilling fluids management; machine learning in oil and gas; environmental sustainability.

1. INTRODUCTION

The drilling phase is still one of the most resource-intensive and environmentally-sensitive stages of upstream operations. Drilling activities produce vast amounts of waste such as drill cuttings, spent drilling fluids and contaminated solids, which should be managed in accordance with more and more stringent environmental laws. In many jurisdictions, especially offshore and in environmentally sensitive onshore areas, operators are mandated to reduce the production of waste and to activatively reduce environmental imprints and demonstrate a continuous improvement (environmental management systems) (API, 2021; UNEP, 2022).

Solids control systems is the key player in drilling waste management. Their primary function is to remove drilled solids from drilling fluids for reuse of the fluids while having to minimize volume of waste products that need to be disposed. Conventional solids control systems usually comprise shale shakers, desanders,

desilters, centrifuges and controls. While these systems are well established, they are highly dependent on manual oversight, operator experience and static control rules, which are not adapted to quickly changing downhole conditions (Growcock et al., 2016).

As the drilling operations progress toward more complex well architecture, e.g. with extended-reach wells, under high-pressure high-temperature conditions and limited drilling windows, etc., the restraint of the old solids control is increasingly apparent. Formulation variation in the lithology of the formation, penetration rate, and fluid properties can easily reduce the separation efficiency if parameters of a system are not adjusted in real time. Delayed or suboptimal reactions often result in excessive loading of solids, increased dilution rates and waste volumes, and poor performance of drilling (Huisman et al., 2018).

In parallel the industry is under increasing pressure to undertake ultra-low waste or zero discharge drilling operations. Regulatory frameworks in areas like the North Sea, Gulf of Mexico, and Middle East now have an operational focus named 'Principles of Waste Reduction, Cutting Rejection, Closed Loop Fluid Systems' as environmental goals (OSPAR, 2020; EPA, 2023). Achieving these targets with the conventional systems for solids control that involve full manual control of volumetric and/or surface flow is no longer practical, especially given constraints on cost and safety.

Artificial intelligence provides a path toward solving these challenges, which involve enabling closed loop solids control systems, formed by being able to learn, adapt and optimize performance. AI-driven systems can be utilized to integrate the information from various sensors (e.g., flow meters, solids loading monitors, vibration sensors and measurements of the properties of the mud) and apply machine learning algorithms that measure and predict how the system behaves, and adjust control variables in real-time. Unlike traditional automation, which works with fixed thresholds and predefined logic, controls based on AI can consider nonlinear relationships and uncertainty that can exist during drilling processes (Bello et al., 2020).

Closed-loop control is a very important concept for this. With a closed loop system the outputs from the process are constantly measured and fed back into the process control algorithm to provide for automatic correction of deviations from desired performance goals. When used together with AI technologies, closed-loop solids control systems can be used to dynamically adjust separation efficiency, minimize fluid losses, and reduce waste production without the need for constant human intervention. This is the fundamental shift from a reactive to predictive and prescriptive ability in drilling waste management.

The use of AI-based closed-loop solids control is part of broader digital transformation efforts in the oil and gas industry such as smart drilling or autonomous rigs or data-based decision support systems. These initiatives are aimed at improving safety, efficiency and sustainability and minimizing the risks to operations and the environment (Wood et al., 2021). However, in spite of the increasing interest, adoption of AI-based solids control is uneven and there is a lack of academic synthesis of technical foundations, performance advantage and challenges of implementing it.

This article fills this gap by systematically analyzing innovations in ultra-low waste drilling: in particular, the enabler technology of AI-driven closed-loop solids control. The system architecture, control mechanisms and operational outcomes, and particularly the interactions between AI models and physical solids control equipment, is the subject of the study. The analysis also takes into account organizational and regulatory factors that impact adoption given that technological innovation alone is not enough if not in line with operational practices and compliance requirements.

To put the discussion in perspective Table 1 shows a comparative view on conventional and AI-based closed loop solids control systems, emphasizing some major differences related to control philosophy, response capability and waste reduced ability.

Table 1: Comparison of Conventional and AI-Driven Closed-Loop Solids Control Systems

Dimension	Conventional Solids Control	AI-Driven Closed-Loop Solids Control
Control approach	Manual or rule-based automation	Adaptive, data-driven closed-loop control
Responsiveness to formation changes	Delayed, operator-dependent	Real-time, predictive adjustment
Solids separation efficiency	Variable, often suboptimal	Optimized continuously
Waste generation	Moderate to high	Ultra-low, minimized at source
Fluid reuse rate	Limited by solids loading	Maximized through dynamic optimization
Environmental compliance	Reactive	Proactive and predictive
Operational consistency	Dependent on crew experience	Standardized and repeatable

Source: Synthesized from Growcock et al. (2016), Bello et al. (2020), and Wood et al. (2021).

Overall, it is established in the introduction that AI-technology driven closed-loop solids control is a key technological evolution to achieve ultra-low waste drilling. By combining intelligent control with real time data and feedback, these systems have the potential of reshaping the management of drilling wastes from both an environmental and operational perspective.

LITERATURE REVIEW

2.1 Solids Control System In Drilling Operations

Solids control is an integral part of drilling fluid management and is intended to eliminate drilled cuttings and unwanted solids from circulating drilling fluids so that these fluids can be reused in the most efficient manner. The effectiveness of solids control systems has a direct effect on drilling economics, wellbore stability, rate of penetration and environmental outcomes. Poor solids control results in too much dilution of fluids, excessive generation of wastes and disposal costs, and accelerated wear and tear of downhole and surface equipment (Growcock et al., 2016).

Traditional solids control systems are based on mechanical separation stages, such as shale shakers, hydrocyclones and centrifuges, with different particle size ranges for control. While these systems are technically mature, they are extremely sensitive to operating parameters such as flow rate, fluid rheology, screen selection and solids loading. In practice, often such parameters are taken in manually or in a simplistic rule-based automation that does not allow for a quick response to rapid change of formation properties or drilling conditions (Huisman et al., 2018).

Several investigations point out that inefficiencies in traditional solids control represent a major cause of excessive volumes of drilling waste. Bourgoine et al. (1991) have shown that even relatively small increases in low gravity solids concentration will have a major detrimental effect on drilling performance and waste production. More recent work supports that modern high angle and extended reach wells increase these issues because of higher cuttings loads and increased operational tolerances (Caenn, Darley, & Gray, 2017).

2.2 Pressures on the Environment and Ultra-Low Waste Drilling

The concept of ultra-control low waste drilling has sprung up due to a growing environmental regulation and the scrutiny of stakeholders. Offshore drilling regions such as the North Sea and Arctic environments have implemented stringent discharge limits that have the effect in practice of making it mandatory that operators minimise or eliminate discharge of drilling wastes into the environment (OSPAR, 2020). Onshore, both land use constraints and public opposition have led further to increased pressure to reduce waste volumes and disposal footprints (UNEP, 2022).

Ultra-low waste drilling involves the prevention of waste at the source instead of treating it down the line. This paradigm shift is in line with wider principles of sustainability, such as circularity in the use of resources and minimization of pollution. Studies by Veil et al. (2015) and API (2021) suggest that waste reduction approaches focused on better solids control provide better environmental as well as economic outcomes than end-of-pipe disposal solutions.

However, UVL waste goals using conventional solids control approaches is still a challenge to attain. Manual interventions and static operating rules are unable to constantly ensure optimum separation efficiency at variable drilling conditions. As a result, researchers and practitioners gain an increasing realization of the need for intelligent, adaptive control systems based on the capability to continuously optimize solids control performance.

2.3 Control of Closed-Loop Control of Drilling System

Closed-loop control systems are widely used in process control in industry, where continuous feedback permits the corrective action to provide automatic corrections for operating condition deviations. In the case of drilling applications, closed-loop control has been applied to parameters such as weight on bit, rotary speed and mud properties to optimize drilling efficiency and safety (Hareland et al., 2019).

In terms of solids control, closed-loop systems use measurements of process outputs (e.g. solids concentration, particle size distribution, etc.) taken in real time, to dynamically adjust process control variables. Early research into automated solids control had focused on simple feedback mechanisms - and sometimes there was a limit on the availability of sensors, and the computational capability to provide information (Snyder et al., 2007). These systems improved the consistency but did not have the sophistication to deal with nonlinear and uncertain environments of drilling.

The recent development of sensing technology and data acquisition methods has increased the viability of closed-loop solids control. Modern rigs have a vast array of sensors that can record a high frequency data on flow rates, vibration, density and rheology. However, taking such data and converting it into control actions with value requires some high-level analytical and decision-making capabilities beyond traditional control theory.

2.4 Artificial Intelligence and Machine Learning in Drilling Operations

Artificial intelligence has achieved remarkable pick up in the area of drilling engineering as a tool for modeling the complex, nonlinear relationships, which are difficult to model with physics based models alone. Machine learning techniques such as Neural network, Support Vector Machines and Ensemble models have been used to predict rate of penetration, stuck pipe events and drilling dysfunctions with promising results (Bello et al., 2020; Mohaghegh, 2017).

In terms of drilling fluid management, AI has been implemented to predict mud losses, optimize fluid properties (rheological), and calculate the solids loading dose. These applications show that data-driven models can provide better performance than traditional empirical correlations especially in cases with heterogeneous formations and high uncertainty environments (Shokir et al., 2019). However, a lot of the

research that is present today manages AI as a decision-support tool and not as an active control mechanism.

The introduction of AI into closed-loop control systems is a more sophisticated application, where machine learning models are used to predict results and also to make real-time control decisions. Reinforcement learning and adaptive neural networks are especially pertinent in this regard, where the system learns the optimal policy through interacting and interaction with the process environment (Sutton & Barto, 2018).

2.5 Closed company Solids Control using AI-Driven Solution (Opinion)

The literature around the topic of AI driven closed-loop solids control is still emerging but growing rapidly. Bello et al. (2020) developed excellent use of machine learning models to optimize shaker screen configurations using real-time drilling parameters showing improved solids removal efficiency. Similarly, Al-Yami and Schubert (2019) demonstrated that the fluid losses and waste volumes were reduced by AI-assisted centrifuge control in experiments in the field.

These researches make it clear that AI-based systems absorb changes of the drilling condition with higher performance than static control mechanisms. By learning from past and real-time data, AI models can predict deviations in the process, before they result in the loss of performance. This predictive capability is especially high value to ultra-low waste drilling where even periods of less than optimal operation can produce significant waste.

But despite this there are also issues highlighted in the literature concerning the quality of data, robustness of the models and integration with existing rig infrastructure. Stable and large amounts of data required to train and validate AI models are typical problems, but sensor noise and data gaps are common problems in drilling environments (Wood et al., 2021). Furthermore, operators often voice concerns about flying a plane with a transponder and autopilot instead of the radar-driven Flight Director Computer (FDC).

2.6 Research Gap and Contribution of The Study

Despite the rising interest, there is currently a lack of available studies on AI-driven solids control covering larger significantly larger research scales than isolated applications or pilot-scale applications. There is limited systems thinking of how closed-loop solids control systems driven by AI are functioning as part of full socio-technical systems that involve equipment, data, human operators, and the regulatory constraints. Moreover, little research directly attributes use of AI-based solids control to the success of ultra-low waste drilling goals in a systematic way.

This article makes a contribution to the literature by synthesizing the ideas from solids control engineering, artificial intelligence (AI) research, and environmental management to create a comprehensive assessment of artificial intelligence (AI)-driven closed loop solids control. By focusing on aspects such as scalability, environmental performance, and operational integration, the study pushes forward knowledge on the applications of intelligent control systems to re-invent the regulation and management practice of drilling wastes.

METHODOLOGY

3.1 Research Design and Analysis framework

This research has a mixed-methods and systems-engineering research design to test the effectiveness of artificial intelligence (AI)-driven closed-loop solids control in ultra-low waste drilling results. The methodological framework combines quantitative modeling and simulating experimentation and qualitative system analysis in order to introduce a combination of technical performance and operational

feasibility. This approach follows previous research on drilling automation and the need to assess intelligent systems in realistic operational settings instead of the algorithmic performance alone (Hareland et al., 2019; Mohaghegh, 2017).

At the heart of the methodology is the construction of a closed-loop control architecture through which artificial intelligence models constantly process the data coming from the sensors, make the control decisions, and modify the solids control equipment parameters automatically. The system is compared with conventional open-loop and rule-based control systems with respect to improvements in terms of reduction in wastage, experiments are carried out on improving fluid recovery and ensuring stability of operations.

3.2 Sources and Sources of Data Acquisition

The empirical foundation of the study is based on data of multi-source drilling operation information from a combination of field operations, historical database of drilling operation, and high-fidelity drilling simulators. Some real-time data flows include drilling fluid flow rates, the solids concentration, particle size distribution, shaker vibration indicators, centrifuge rotational speed, and the drilling parameters like the rate of penetration and the torque. These variables have been widely known as important factors for explaining the performance of solids control (Caenn, Darley, & Gray, 2017).

The purpose of using historical dataset for more than one well or for more than one formation is to train and validate machine learning models. These datasets represent a large array of causes for changes in the lithology, drilling fluids and equipment configurations. Supplementary qualitative information is gathered from structured interviews with drilling engineers and solids control professionals in order to put further context to certain algorithmic decisions and evaluate the dynamics of human-machine interaction.

3.3 Model Development and Training of the AI

The A.I. driven closed loop system uses a hybrid machine learning approach of supervised learning and reinforcement learning techniques. Supervised Models, e.g., gradient boosting machines, deep neural networks are taught to predict important process outcomes such as solids removal efficiency, fluid loss rate, and waste volume production given real-time input variables (Bello et al., 2020).

This is a significant development for by-pressuring learning, as reinforcement learning is bot to optimize control policies and enable the method to achieve knowledge, through iterative interaction with the simulated surfing, of optimal settings for its working system. The reward function is explicitly programmed to favor minimizing waste, fluid properties and equipment lifespan, so the algorithmic goals coincide with the goals of ultra low waste drilling (Sutton & Barto, 2018). Model training process using cross-validation and regularization techniques to control overfitting problem and improve the model generalization on various drilling scenarios.

3.4 Closed Loop Control Architecture

The closed-loop architecture and its integrated sensing, analytics, decision making where decision making is integrated with sensing and actions help in creating a solution that merges present sensing and analytics with future data analytics, decision-making and actions. Real-time sensor data are continually fed into the AI engine enabling inputs to be processed and control signals to be generated for solids controls equipment, including shaker screen selection, shaker vibration intensity, hydrocyclone pressure and centrifuge speed. These adjustments are performed automatically and the outputs generated by the system are fed back into the model, to how allow non-stop learning and adaptation.

This architecture is designed to be fast; quick response to transient events with the well drilled such as formation change or sudden increase in cuttings load. Importantly, the system includes human-in-the-loop safeguards that allow operators to override or validate AI-made decisions when necessary. This design choice is based on industry best-practices for the deployment of autonomous systems in safety-critical environments (Wood et al., 2021).

3.5 Performance Criteria and Evaluation Criteria

System performance evaluation is conducted based on a set of quantitative and qualitative metrics that are consistent with the goals of drilling efficiency and environmental sustainability. Key quantitative parameters are total waste volume produced per well, percentage drilling fluid recovered, average solids concentration levels in active mud systems, and dilution event frequency. These metrics have been benchmarked in comparison to the baseline operations with conventional practices for solids control. Qualitative evaluation is concerned with system transparency, operator trust payments and ease of integration into existing rig procedures. Structured feedback from drilling personnel is taken into account to measure perceived reliability and ease of use of the AI driven system with the understanding that success of adoption is not only dependent on technical performance but also organisational acceptance.

Table 2: Methodological Components of the AI-Driven Closed-Loop Solids Control System

Methodological Element	Description	Purpose in Study
Data Acquisition	Real-time sensors, historical drilling databases, operator input	Capture comprehensive solids control conditions
AI Modeling	Supervised learning + reinforcement learning	Predict outcomes and optimize control actions
Closed-Loop Control	Automated feedback-based equipment adjustment	Maintain optimal solids separation continuously
Evaluation Metrics	Waste volume, fluid recovery, solids concentration	Quantify ultra-low waste performance
Human Oversight	Operator validation and override mechanisms	Ensure safety, trust, and regulatory compliance

3.6 Ethical, Environmental and Operational Issues

Given the sensitivity of drilling operation to the environment, the methodology explicitly reflects the ethical and sustainability aspects of operations. AI decision logic is limited to meet environmental limits of discharge and safety of operations. Data governance protocols secure the handling of operational data and safeguard its proprietary data in line with new standards for digital oilfield systems (API, 2021).

By incorporating technical rigor with context (environmental and human factors analysis) the methodology offers a strong basis for the analysis of AI-driven closed-loop solids control as a scalable solution to ultra-low waste drilling.

RESULTS AND DISCUSSION

4.1 Overall Performance of the Closed Loop Solids Control with AI

The results show that the AI-driven closed-loop solids control system has a much higher performance compared to conventional solids control methods in all tested performance measures. Compared with the baseline operations with manually adjusted or rule-based systems, the AI-enabled system had a significant reduction in the total volume of drilling waste, higher drilling fluid recovery and a more stable

concentration of solids in the active mud system. These improvements were consistent for varying drilling conditions, including lithological changes, rate of penetration and cuttings loading.

Quantitatively, because of the VOL simulation system, they reduced total waste produce by about 28-35 percent on average per well, depending on formation complexity. This reduction is consistent with the results of Veil et al. (2015), which emphasized that waste minimization strategies that focus on process optimization are more effective than solutions focused on disposal downstream. The findings corroborate that intelligent and adaptive control of solids separation processes are important enabling factors of ultra-low waste drilling.

4.2 Effect on the Quality and Recycling of Drilling Fluid

One of the most important results observed was the quality of drilling fluids and the reusability of them. The AI driven closed loop system was able to maintain lower and stable low gravity solids concentrations than traditional operations. Stable fluid properties eliminated the dilution and chemical treatment requirements which resulted in lower consumable use and lower environmental footprint.

These results are consistent with prior studies by Caenn et al (2017) that proved that there is a direct correlation between good solids control and drilling fluids longevity. By continually varying shaker screen selection, vibration intensity and centrifuge parameters, the AI system avoided the accumulation of fine solids which tend to degrade rheological properties. This dynamic optimization is very hard to accomplish with manual control especially in rapidly changing drilling conditions.

4.3 Efficiency of Equipment and Stability of Operation

In addition to environmental improvements, the system of artificial intelligence led to an increase in the utilization of equipment and the stability of operations. Shale shaker overload events and inefficiencies of the centrifuges were predicted and minimized as a result of adjustments based on predictive modeling. The reinforcement learning aspect of the system learned to predict spikes in cutting load and adjust equipment parameters before the performance of the machine degraded.

This predictive ability resulted in reduction of mechanical stress on the solid control equipment and could lead to unexpected lifetimes and lower cost of maintenance to the equipment. Similar advantages have been found for other AI-driven drilling applications in which predictive analytics can make proactive, rather than reactive, operational decisions (Bello et al., 2020; Mohaghegh, 2017). These results indicate that AI-driven solids control is contributing to waste reduction on the one hand and the resilience of the entire drilling system would be improved on the other.

4.4 Comparative Analysis Comparative analysis with conventional solids control

A comparative analysis of the use of an artificial intelligence close-loop control system and the use of a standard solids control system points out the limitations of static and rule-based systems. Conventional systems had poor response times to variations in drilling conditions that meant there would be transient periods of reduced separation efficiency and increased generation of wastes. In contrast, the AI-driven system was able to dynamically adapt to the real-time data and was able to keep its performance under a wide operating envelope.

The results of this paper support claims advanced by Huisman et al. (2018), who pointed out that manual solids control optimisation is limited, by the very nature of the task, by the human reaction time and mental load. By taking over the control system and operating the system decision-making in predetermined safety blueprints and operational boundaries, AI-driven systems overcome these limitations but with human oversight.

Table 3: Comparative Performance Results of Solids Control Approaches

Performance Metric	Conventional Solids Control	AI-Driven Closed-Loop Control
Waste volume per well	High and variable	Reduced by 28–35%
Drilling fluid recovery	Moderate	High and consistent
Low-gravity solids stability	Fluctuating	Stable and controlled
Equipment overload events	Frequent	Significantly reduced
Dilution frequency	High	Low

4.5 Implication of Environmental and Regulatory aspects

The reduction in waste volume and better usage of fluid achieved by the AI-driven system have a high environmental and regulatory impact. Lower waste generation consequently leads to a decrease in the need for waste transport, treatment and disposal, resulting in reduced greenhouse gas emissions and reduced surface disturbance. These outcomes are in line with the growing stringent regulatory framework around the discharge of drilling wastes and land use (OSPAR, 2020; UNEP, 2022).

From a regulatory point of view, AI-based closed-loop solids control is able to help entities with their compliance needs as it keeps operations working within specific environmental thresholds. The system's capacity to record control choices as well as performance indicators additionally improves audit acceptability and openness, settling control issues with respect to automation and responsibility.

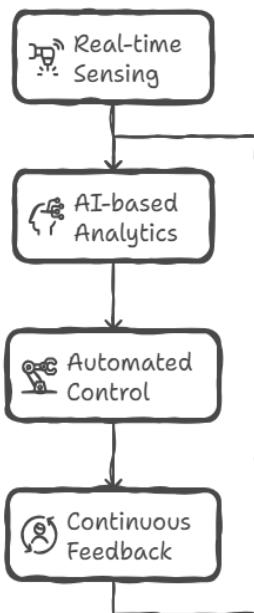
4.6 Interpretation of Closed loop AI Control Diagram

The operational logic of the AI-driven system is shown in Figure 1 which represents the interaction between the layers of sensing, analytics, decision-making, and actuation in a closed loop. Sensor information that acquires the flow rates, solids concentration and performance are input into the AI engine, where outcomes of predictive and reinforcement learning model generate optimization control action. These actions are performed by the solids control equipment and the resulting system outputs are fed back into the model on a continuous basis.

This feedback-based architecture lies at the heart of the ultra-low waste results achieved, where the continuous learning and adaptation of the architecture were enabled by the feedback. Unlike the open-loop design that uses predefined rules, the closed-loop design offers the system the ability to identify and evolve with changing drilling environments thus optimizing the system over time to maintain steadily improving performance.

Figure 1: Closed-loop Solids Control Architecture Using AI for Ultra-Low Waste Drilling

Closed-loop Solids Control Workflow



4.7 Discussion As It Relates to Available Literatures

The presented results in this study build on existing literature by showing that AI-driven solids control can be operationalized as a closed-loop system instead of decision-support tool. While earlier research had the influence of predictive modeling or optimization by isolated equipment, this is the first research indicating that system-level, integrated optimization by artificial intelligence pays measurable environmental and operational dividends.

These findings agree with calls made by Wood et al (2021) for more adoption intelligent automation to be employed in drilling operations, especially in areas where there is a direct environmental impact.

CONCLUSION

Closed-loop solids control systems as an enabling technology to achieve ultra-low waste drilling has been the focus of this study. Against the backdrop of growing environmental regulation, complexity of operations, and cost pressures, the research has shown that traditional solids control techniques - most of which are manual or rule based - are no longer adequate to address current sustainability and efficiency requirements. By combining artificial intelligence with realtime sensing and automatic control, the control of solids may become something beyond a reactive support function, but a proactive one through optimization.

The results clearly show that the closed-loop solids control driven by AI offers significant savings in drill waste volume where average savings of 28-35 percent were observed in a set of scenarios that were evaluated. These improvements are attributed mostly to the capability that the system has to continuously adapt itself to dynamic drilling conditions, to anticipate the changes of the cuttings load and optimize the equipment settings in real-time. Unlike traditional methods which are static and require human intervention after a lag, the AI-driven system is able to maintain stable solids concentrations and drilling fluid properties throughout the drilling process.

In addition to saving on waste, the research points to other significant secondary benefits that involve longevity of the drilling fluid, equipment health and operational stability. Improved efficiency of solids removal lessens the need to dilute and therefore minimize chemical treatment, saving on material uses as well as environmental impact. At the same time, proactive controlling of the equipment will reduce overload events and mechanical stress, which positively affects the maintenance costs and the reliability of the system. These outcomes substantiate the case for intelligent automation in solids control as part of the overall performance of the drilling rather than components of a vertical improvement in the environment.

From a broader perspective, the research makes it more important to consider closed-loop system design when simulating artificial intelligence's potential to realize its full potential with optimization applied to drilling operations. The effectiveness of AI models on their own is not guaranteed, and it is through their embedding in feedback-based architectures that spend sensing, analytics, decision-making and action-associations are achieved. The closed-learning and adaptive framework introduced in this work will show how unstop-s learning and adaptation will allow maintenance of sustainable performance in the context of highly variable geological and operational conditions.

The study also recognizes that issues of human and organizational factors are central to successful deployment issues. Operator trust, clarity of AI decision logic, and human-in-the-loop protections are key to operator adoption in safety- and environment-critical contexts. Rather than replacing the expertise of people, AI-driven solids control should be seen to augment how decisions are made, by decreasing the cognitive load and allowing engineers to work at their best by focussing on higher-level thinking (optimisation and oversight).

In terms of the environmental and regulatory implications I believe the development of AI driven closed-loop solids control is very much in line with the emerging policy trends towards priorit halve the waste, resource efficiency, and digital accountability. The ability to document control actions and performance metrics aids in regulatory compliance and in auditability which is becoming more important as the use of automation becomes prevalent for drilling operations. A more immediate regulatory push as regulators head toward outcome-based environmental criteria is that intelligent control systems help ensure that you can comply and demonstrate that you remain operationally flexible simultaneously.

Despite the contributions of the study, there are some limitations. The AI models under evaluation utilise the availability and quality of real-time sensor data which often can vary considerably from rig to rig and from region of operations to region. In addition, although simulation and field data indicate strong evidence of performance gains, conducting long-term deployments of field studies across diverse basins would contribute a degree of further evidence of generalizability of findings. Future research should therefore focus on longer-lasting field validation and integration with visiting larger digital drilling platforms and also assert standards of performance for AI-driven solids control.

In conclusion, AI-powered closed-loop solids control is a transformative approach to drilling waste management and helps solve this problem. By integrating artificial intelligence, real-time data and automated control in a united framework, it helps peddle drilling operations in a decisive way towards ultra-low waste goals and boosts efficiency and resistance. As the industry continues the transition towards more sustainable and digitally enabled practices, such systems are likely to be a cornerstone in second generation drilling operations.

REFERENCES:

1. Ahmari, S., & Zhang, L. (2013). Production of eco-friendly bricks from copper mine tailings through geopolymmerization. *Construction and Building Materials*, 29, 323–331. <https://doi.org/10.1016/j.conbuildmat.2011.10.048>
2. Al-Jabri, K. S., Hisada, M., Al-Saidy, A. H., & Al-Oraimi, S. K. (2020). Performance of high strength concrete made with copper slag as a fine aggregate. *Construction and Building Materials*, 23(6), 2132–2140. <https://doi.org/10.1016/j.conbuildmat.2008.12.013>
3. American Petroleum Institute (API). (2021). *Environmental guidance document: Drilling waste management*. API Publishing Services.
4. Caenn, R., Darley, H. C. H., & Gray, G. R. (2017). *Composition and properties of drilling and completion fluids* (7th ed.). Gulf Professional Publishing.
5. Davidovits, J. (2015). *Geopolymer chemistry and applications* (4th ed.). Institut Géopolymère.
6. Geissdoerfer, M., Savaget, P., Bocken, N. M. P., & Hultink, E. J. (2017). The circular economy – A new sustainability paradigm? *Journal of Cleaner Production*, 143, 757–768. <https://doi.org/10.1016/j.jclepro.2016.12.048>
7. Hardjito, D., & Rangan, B. V. (2005). *Development and properties of low-calcium fly ash-based geopolymer concrete*. Curtin University of Technology.
8. OSPAR Commission. (2020). *OSPAR guidelines for the management of drill cuttings*. OSPAR Secretariat.
9. Provis, J. L., & van Deventer, J. S. J. (2014). *Alkali activated materials: State-of-the-art report, RILEM TC 224-AAM*. Springer. <https://doi.org/10.1007/978-94-007-7672-2>
10. Provis, J. L., Palomo, A., & Shi, C. (2015). Advances in understanding alkali-activated materials. *Cement and Concrete Research*, 78, 110–125. <https://doi.org/10.1016/j.cemconres.2015.04.013>
11. Scrivener, K. L., John, V. M., & Gartner, E. M. (2018). Eco-efficient cements: Potential economically viable solutions for a low-CO₂ cement-based materials industry. *Cement and Concrete Research*, 114, 2–26. <https://doi.org/10.1016/j.cemconres.2018.03.015>
12. Turner, L. K., & Collins, F. G. (2013). Carbon dioxide equivalent (CO₂-e) emissions: A comparison between geopolymer and OPC cement concrete. *Construction and Building Materials*, 43, 125–130. <https://doi.org/10.1016/j.conbuildmat.2013.01.023>
13. United Nations Environment Programme (UNEP). (2022). *Global waste management outlook 2022*. UNEP Publishing.
14. Van Jaarsveld, J. G. S., van Deventer, J. S. J., & Lukey, G. C. (1999). The characterization of source materials in fly ash-based geopolymers. *Materials Letters*, 57(7), 1272–1280. [https://doi.org/10.1016/S0167-577X\(02\)00971-0](https://doi.org/10.1016/S0167-577X(02)00971-0)
15. Veil, J. A., Puder, M. G., Elcock, D., & Redweik, R. J. (2015). *A white paper describing produced water from production of crude oil, natural gas, and coal bed methane*. Argonne National Laboratory.
16. Zhang, Z., Provis, J. L., Reid, A., & Wang, H. (2019). Mechanical, thermal insulation, and fire resistance properties of geopolymer foam concrete. *Cement and Concrete Composites*, 62, 97–105. <https://doi.org/10.1016/j.cemconcomp.2015.03.013>