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Abstract 

Quark confinement is the strangest and most important mystery of high energy physics. 

Different models have been proposed to solve it among which magnetic monopoles are promising 

candidates. In this paper we will discuss some theoretical and experimental studies, which 

advocates the existence of magnetic monopoles and provide us a vision to understand quark 

confinement. 
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1. Introduction 

The dual superconductor picture is one of the most important ideas in the theory of color confinement 
[1] which sets a striking parallelism between a normal superconductor and QCD vacuum, explains that 

the color flux tube between quarks is caused by the condensation of color magnetic monopoles in the 

QCD vacuum through the dual Meissner effect [2, 3]. Although the presence of monopoles and their role 

as the endpoints of flux tubes provides a mechanism for the confinement of quarks within hadrons but 

till yet QCD does not appear as a reliable candidate of color magnetic monopoles. Theoretical 

developments in the understanding of monopoles motivates for the existence of monopole. Dirac in 

1931 [4] observed that the existence of monopoles would necessitate the quantization of electric charge. 

't Hooft and Polyakov [5, 6] discovered that magnetic monopoles will occur naturally in a Georgi-

Glashow model, where the non-Abelian local symmetry is broken down by the Higgs mechanism into 

an Abelian symmetry. 

To study the quark confinement using dual superconductor mechanism two methods mostly used are 

Abelian projection method [2, 3] and Field decomposition method [7] discussed in next sections. These 

methods have been supported by numerical simulations, and have provided qualitative insights into the 

nature of quark confinement. The aim of this comprehensive review is to provide a thorough summary 

of the current state of knowledge regarding the elusive concept of magnetic monopoles. 

 

2. Theory of magnetic monopoles 

The section would likely start by introducing the theoretical frameworks in which magnetic monopoles 

are either permitted or strongly suggested to exist. 
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2.1 Monopoles in classical electromagnetic theory 

In classical electromagnetic theory, monopoles are not present, and the concept of a magnetic monopole 

is not consistent with the equations of electromagnetism as formulated by Maxwell 
[8] can be written in the form. 

 

,  

 

 
, 

 
 

Where  and  are the electric and magnetic fields respectively,  is the electric charge density and  

is the electric current density. If no electric charges are present then  and  vanish and the equation 

(1) exhibit the symmetry known as electromagnetic duality which involves interchanging the electric 

field  and the magnetic field  while changing the sign of one of them as  and . Thus 

the existence of electric charge breaks the symmetry. It had seen that symmetry can be restore by 

assumption of the existence of magnetic charge along with the duality condition. A new set of 

equations with a profound symmetry is given as. 

 

(1) 

 

(2) 

 

Where   and  are the magnetic charge density and the magnetic current density respectively 

characterised by the replacement of , and  ,  . The fundamental equations 

governing electromagnetic fields maintain their structure when represented in the complex domain. 

Combination of the electric and magnetic fields into a single complex 

field,  remain invariant under complex rotation represented as. 

 

 

(3) 

 

This invariance allows for a convenient and elegant way to analyze and solve problems involving time-

varying electromagnetic fields. However magnetic monopoles are not a part of classical 

electromagnetism, but one can explore the idea that the duality transformation under Maxwell's 

equations suggests an elegant way in which magnetic monopoles could fit into the framework of 

classical electromagnetism. In classical electromagnetism, the electric field and magnetic field can be 

expressed in terms of the scalar potential (φ) and vector potential ( ) as. 
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(4) 

 

 

 

 

 

However, equation  does not favour the existence of magnetic monopole as 

 and hence 

But the scalar and vector potential are not physical objects themselves so there is no fundamental 

theoretical obstacle to including magnetic monopoles in the classical electromagnetic theory. In this 

extended framework, the theory remains consistent and mathematically elegant, even with the 

inclusion of magnetic charges. 

2.2 Monopoles in quantum theory 

In the context of quantum theory, monopoles are postulated to carry quantized magnetic charges, 

analogous to the quantization of electric charge. In some quantum field theories monopoles are closely 

associated with topological defects and support the fact that quantum mechanics is consistent with the 

existence of magnetic monopoles. 

 

2.2.1 The Dirac monopole 

Dirac's solution to the problem of existence of monopole was to introduce a singularity in the vector 

potential. This singularity can be thought of as a "Dirac string." The Dirac string is an infinitesimally 

thin, infinitely long line that extends from the location of the monopole to infinity shown in figure 1 [9]. 

Along this string, the vector potential becomes singular, and it can be visualized as a magnetic analog 

of an infinitely long, infinitesimally thin solenoid with no end. 
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Fig 1: Representation of magnetic field produced by a magnetic monopole g as the end of a Dirac 

string i.e. line of dipoles or a tightly wound solenoid that stretches off to infinity 

 

Dirac assumed the monopole of strength ‘g’ located at the origin. The static magnetic field produced by 

point magnetic monopole analogous to a point electric charge is Coulomb type and in radial direction is 

given by 

 

(5) 

 

By taking the divergence of magnetic field , where we have used , and magnetic 

charge is at the origin, it follows. 

 

(6) 

 

The total magnetic flux through the sphere of radius ‘r’ surrounding the origin is given by 

 

(7) 

 

For Quantum mechanical description of Dirac monopole consider a time independent electrically 

charged particle ‘e’ in a magnetic field of monopole. Dirac noted that the interaction of an electric 

charge with a vector potential  is given by the phase in the wave function. The wave function of the 

free particle is given by. 

 

(8) 

 

Where is the solution of the free Schrödinger 

equation. Applying momentum operator on 

wavefunction. 

 

 

 

 

(9) 

 

So, the important point is there that presence of vector potential only responsible to change the wave 



 

 

function. In the electromagnetic field , as the wave function changes 

. It was observed in quantum theory by Aharonov Bohm effect [10] that 

the phase of a wave function is not observable, but the difference of phases observed actually. For a 

charged particle moving in an electromagnetic field, the phase acquired by the wave function depends 

not only on the kinetic energy of the particle but also on the electromagnetic potential. It allows 

charged particles to be affected by the vector potential even where the magnetic field is zero, resulting 

in a change in the complex phase of the particle's wavefunction for objects like a Dirac solenoid. The 

phase acquired by the wave function as the particle moves along a closed path is given by 

 . The accumulated phase difference which is observable quantum mechanically between 

the two different path at fixed r, θ with ϕ ranging from 0 to 2п is given by. 

 

 

(10) 

 

(11) 

Where represent flux through the area covered by the cap in the sphere shown by the shaded 

region in figure 2 [11]. As θ→0, the loop shrinks to a point and flux passing through the shaded region 

approaches to zero. i.e. . 

 

Fig 2: Representation of the flux through the area covered by the cap  
From equation (10) as θ increases the shaded region increases hence more flux. As θ→п cap should 

encloses the flux 4 mg. 

 



 

 

(12) 

 

But as θ → п, the cap again shrinks to a point and  become singular along the entire negative z axis. 

The string must be continuous and can be chosen to be along any direction. This is known as Dirac 

string. In general Dirac string only observable at. 

 

(13) 

From equation (12) and (13) we have. 

 

(14) 

 

Hence,        (15) 

 

It implies that all charges in nature will be quantised by . It is called the Dirac quantisation 

condition [4]. Dirac's condition introduces a unique quantization pattern, reflecting the interplay 

between electric and magnetic charges. 

Further Wu and Yang [12, 13] constructed Dirac monopole by offering a different approach. He 

considered that Dirac string singularity is unphysical and also equation (6) refers that physical 

singularity should only occur at the origin. Wu and Yang’s approach divides the space surrounding 

the monopole into two different overlapping regions as shown in figure 3, [14] and suggested that 

rather than introducing a singular vector potential there should be different potentials in different 

overlapping regions. 

 

Fig 3: The Wu-Yang configuration describing a magnetic monopole using overlapping region Ra 

singular along the S pole and Rb singular along the N pole 

 

For overlapping region , Vector potential A to be singular along r = -z, we should have (S -pole). 

 



 

 

(16) 

 

For overlapping region , Vector potential A to be singular along r = z, we should have (N-pole). 

 

(17) 

 

 should be zero field and gauge equivalent of some λ, given as. 

 

(18) 

 

If we delete the z axis, then and will give the same magnetic field. A common boundary is taken to 

be at the equator 
 
to calculate total magnetic flux. 

 

(19) 

 

Using equation (16) and (17) we get. 

 

(20) 

 

The total magnetic flux for expression of vector potential given in equation (20) represents a valid 

formulation which favours Dirac monopole. 

 

2.2.2 ‘t Hooft Polyakov monopole 

The 't Hooft-Polyakov monopole is a theoretical concept in particle physics, addressing the existence 

of magnetic monopoles in non-Abelian gauge theories, independently proposed by Gerard 't Hooft and 

Alexander Polyakov. In this theoretical model, ’t Hooft and Polyakov [5, 6] focused on the SU(2) gauge 

group, which is a non-Abelian group. The local symmetry of the theory is spontaneously broken down 

to U (1) by a Higgs field. This breaking of symmetry from SU (2) to U(1) is fundamental to the 

generation of 't Hooft-Polyakov monopoles. Importantly, 't Hooft-Polyakov monopoles exhibit smooth 

solutions, in contrast to Dirac monopoles with singular vector potentials. Consider the non Abelian 

symmetry group O (3). The lagrangian density, 

contains the gauge field  and an isovector Higgs field  is invariant under isospin rotations described 

by 

 

(21) 



 

 

where the gauge field defined as , and the covariant derivative defined 

as. 

 

(22) 

 

The potential has a minimum for  at . ‘t Hooft look for a solution 

consistent with the asymptotical form. There exist regular solutions to the field equations derived from 

the Lagrangian given in equation (21) in which the gauge potentials have nontrivial asymptotic form. 

A general spherically symmetric ansatz for the scalar field is given as 

 

(23) 

 

Since the solution is a magnetic monopole, we expect the electric field to be zero, so we work in the 

coulomb gauge . At infinity, the vacuum solution depends on the direction. 

 

(24) 

 

Hence the energy configuration is partitioned into two components, originating from the field inside 

and outside the core, respectively. Beyond the core, . Hence at , ϕ takes on its vacuum 

value and has to be simple function of r. This leads to a relation between the full non Abelian gauge 

field strength  and Abelian part of the full field strength . A close look at the U (1) gauge 

potential, the electromagnetic field given as. 

 

(25) 

 

This is more complicated than usual definition of Abelian field strength. To reduce it to the usual 

one boundary conditions applied are. 

 

, ,         (26) 

 

The Maxwell vector potential now given as. 

 

(27) 

 

Hence electromagnetic field calculated as. 

 

(28) 

 



 

 

By incorporating the asymptotic conditions expressed in equations (23) and (24), it becomes 

evident that the Maxwell potential  undergoes cancellation, leading to the emergence of the 

electromagnetic field solely attributed to the presence of the Higgs field. The asymptotic form of ‘t 

Hooft Polyakov solution find as. 

,         (29) 

 

The form (29) shows that the asymptotic electric field vanishes and asymptotic magnetic field that of a 

monopole is given as 

 

(30) 

 

Corresponding to this equation (30) magnetic flux is given by equation (12) is 

 

(31) 

 

Comparing equation (12) and equation (31) we get . (32) 

 

This statement indicates that the magnetic charge associated with't Hooft-Polyakov monopole is twice 

the minimum magnetic charge allowed by the electric charge and the Dirac quantization condition. 

Hence, the magnetic charge ‘g’ of the monopole achieves its minimum value in accordance with the 

Dirac condition. This classical solution with finite energy, possessing topological nontriviality, is 

commonly referred to as the 't Hooft-Polyakov monopole showcases a finite core, eliminating the need 

for a Dirac string. 

 

3. Monopoles in Quantum Chromodynamics (QCD) 

In trying to understand magnetic monopoles in the context of Yang-Mills theory without matter fields, 

we have come across two significant methods in our further studies. One is the Abelian projection, 

which is a way of fixing part of the gauge in a certain manner. This process reveals singularities in the 

resulting gauge fields, which represent important features of the theory. Another method is the gauge 

field decomposition, which achieves a similar result but without explicitly fixing the gauge. 

 

3.1 Appearance of monopoles in Abelian projected QCD 

In this section we delve into the intriguing phenomenon of formation of monopoles and exploring the 

condensation of monopole particularly in the framework of Abelian gauge fixing [15]. In this context the 

gluon field undergoes a transformation, developing a singularity in the spatial vicinity of points where 

Abelian gauge fixing proves unsuccessful. Within these regions magnetic monopole manifest and 

showcasing that the topological defects of Abelian gauge fixing are sources of magnetic monopoles in 

the 

realm of QCD. In reducing QCD to an Abelian theory by aligning specific components of the gluon 

field  through gauge transformations, the use of a scalar field is a common technique in quantum 



 

 

field theories to simplify calculations by fixing a particular gauge. To fix a gauge scale field  can 

be written in the form. 

 

(33) 

 

Where  is scalar field corresponding to the color index ‘a’ and are the generators of the 

 group. 

To define different gauges in QCD, local rotations in color space generated by the group. This 

orientation of the vector in color space, is referred as a gauge transformation ensures that the 

physical observables remain unchanged at the space time are generated by the operators of the form 

 

(34) 

 

The operators are the element of the color  group. The generators  are hermitian  

matrices so that the field  may be viewed as a traceless matrix in color space. It is possible to 

perform a gauge transformation to diagonalize the color matrices. Diagonalizing the matrices simplifies 

the representation of the color fields, making calculations more manageable. In the simplest SU(2) 

group the gauge transformation brings the field  into diagonal form given by. 

 

=  =                                                                                              (35) 

 

Where λ(x) are the eigenvalues of matrix ϕ(x) given by . 

 

The monopole occurs at the degeneracy point of the diagonalised elements of . The degeneracy 

point in the Abelian gauge appears as the singular point of like the centre of hedgehog 

configuration as shown in figure 4 [15]. 

 

Fig 4: Representation of separation of gluon field variable in SU (2) Abelian gauge. (a) For regular 

part no monopole appear. (b) Monopole appears for the singular part 

 

Hence the singular point is to satisfy the conditions that all the three components should 

vanish at specific points in the space such that. 



 

 

, ,                                                                                                                     (36) 

 

All three equations determine the three components  of the vector . Since at the point , it 

is not possible to define the gauge and gluon field develops a singularity at that point. 

The  topological  nature  at  the vicinity  of  the  point    explained  in terms  of Taylor  

expansion. It gives = =                                                                       (37) 

Where defines a coordinate system in rotation with given as 

 

(38) 

 

The hedgehog configuration around the singular point of corresponding to the simplest nontrivial 

topology of the non-trivial homotopy group , and the Abelian gauge field has 

the singularity as the monopole appearing from the hedgehog configuration. 

Let (r, θ, ϕ) be the spherical coordinates. The hedgehog field configuration is expressed by. 

 

 

(39) 

 

 can be diagonalized by the gauge transformation with ω as. 

 

 

(40) 

 

 

Where θ, ϕ denotes the polar and azimuthal angle respectively. Here on the z axis (  or 

), At the positive z axis,  and applying it in equation (40) the dependency of ω on ϕ is 

given as. 

 

(41) 

 

By using the gauge transformation scalar field ϕ becomes. 

 

(42) 

 

Now, the gluon field transformation under the same gauge transformation as defined in equation (34). 

 

(43) 



 

 

 

In spherical coordinates the expression of the vector is. 

 

(44) 

 

From the equation (40) and (44) we can find. 

 

 

 



 

 

 (45) 

 

And hence, 

 

 

In equation (46) at θ=0 the term includes the singular part. 



 

 

 

 

(46) 

 

 

 

(47) 

 

This implies that the diagonal part acquire the singular term. Thus in the Abelian gauge, obtained by 

diagonalizing the field ϕ(x), the gluon field can separated into regular part and the singular part in 

equation (46) given as. 

 

(48) 

 

To examine the appearance of the monopole at the origin r = 0, a magnetic flux which penetrates the 

area inside the closed curve C {r, θ, 0 ≤ ϕ < 2π} is found to be 

 

(49) 

 

Which denotes the magnetic flux of monopole situated at the origin, with a endless Dirac string running 

along the positive z-axis. 

 

(50) 

 

These results may be summarized by saying that topological defects of the Abelian gauge fixing are 

the sources of magnetic monopoles. 

 

3.2 Appearance of monopoles in decomposition of gluon field 

Gluons (in general the non-abelian gauge potential) in field decomposition appear of two different 

types, the color neutral binding gluons and the colored valance gluons, in gauge independent manner. 

As a result of this decomposition, the original Yang Mills field theory turns into electrodynamics with 

magnetic monopoles [7]. 

In simplest SU (2) QCD field, is an arbitrary local orthonormal basis given by . In 

Cho decomposition the SU (2) Yang Mills field decomposes in the following manner. 

 

(51) 

 

Where is the unit vector field that gives the Abelian direction at each space time point and ‘g’ is the 

Yang Mills coupling constant. Condition (51) restricts the gauge potential , indicates that the 



 

 

restricted Yang Mills field is obtained as. 

 

(52) 

 

The restricted potential contains two parts: a non topological unrestricted part which is called the 

electric potential, and the topological restricted part which is related to the magnetic potential. The 

Abelian part is not restricted by the condition (52) but the magnetic part is completely determined by 

the magnetic symmetry. Using the restricted potential of equation (52), the field 

strength is given by. 

 

 

=  (53) 

 

Where   is the electric part of field strength and    is the magnetic part of field strength. 

 

 

 

To introduce a magnetic potential corresponding to the magnetic field strength (As is 

expressed in terms of electric potential ), the magnetic vector can be chosen as. 

 

 

(55) 

 

And the magnetic potential expressed as. 

 

(56) 

 

Indeed, and are the electric and magnetic contributions of the gluon field. Using equation (54), 

(55) and (56) the magnetic field strength is given as 

 

(57) 

 

A solution of equation (57) is given as. 

 

(58) 

 



 

 

The component of this magnetic potential are. 

 

(59) 

 

Therefore the magnetic potential has a singularity at α = 0. In space time coordinates in this magnetic 

potential describe a static Wu-Yang monopole located at the origin with Dirac string along the positive 

z axis. So the system is Abelianized in the third axis direction in colour space, we can write the 

singular part of the gluon field as. 

 

(60) 

 

Where  is the diagonal generator of SU (2).Therefore the magnetic charge associated with point like 

monopole is. 

 

(61) 

 

Hence monopole is realised in SU (2) gauge group using Cho decomposition method. 

 

4. Lattice results of magnetic monopole 

In this section we will approach to study monopoles within the framework of lattice QCD. Analyzing 

the interquark potential in lattice QCD provides valuable information about monopole condensation, 

contributing to the understanding of quark confinement mysteries. 

In t’Hooft Abelian projected QCD, potential obtained in lattice QCD can be dissected into the two 

components, the Abelian component and off-diagonal component [15-20]. Further Abelian component 

consist monopole part and the photon part. The monopole component associated  with Abelian 

gauge degrees  of freedom consist magnetic monopole current only 

i.e. . On the other hand the photon part only features color electric currents. 

. 

The lattice gauge field , with lattice spacing ‘a’, gauge coupling constant 

‘g’ and the gluon field  leads to the Cartan decomposition of the SU(3) group. 

                                                                                                                                                                    (62) 

 

The potential is obtained with the Wilson loop , and its Abelian part is 

similarly defined                         by the Abelian Wilson loop . The Abelian link variable 

projected into              the monopole part and photon part  leads to 

the monopole part and the photon part  of the  potential. The Monopole part of the 

potential is defined by the monopole link variable as. 

 

 



 

 

 

 

 

 

 (63) 

The lattice result 

for projectted 

QCD, 

              lattice at β=5.8, representing the static potential V(r) in 

SU(3) QCD, in the monopole part, and in the photon part are 

shown in figure 5 [20]. 

         in 

Abelian 

 

 

 

 

Fig 5: Representation of lattice QCD result for interquark potential V(r) in SU (3) QCD,  in 

Abelian-projected QCD,  in the monopole part, and  in the photon part for lattice at 

β=5.8 

Lattice results reveal a noteworthy observation regarding the SU (3) interquark potential, where the 

curve of V(r) bears a striking resemblance to the slopes of the curve of as well as . 

However, it diverges from the profiles of . The slope of the interquark potential at large 

distances represents string tension σ. The slope of monopole part of the potential  found 

in in SU (3) QCD [20]. This observation suggests that in the Abelian sector, the monopole 

component predominantly maintains the confining force, while the photon component exhibits minimal 

confining force. This observation supports the concept of monopole dominance in driving quark 

confinement within the system. Consequently, in the maximally Abelian gauge, it becomes evident that 

color magnetic monopoles encapsulate the quintessence of non-perturbative QCD. 

 

 



 

 

In the context of SU (3) gluodynamics, an alternative decomposition, distinct from equation (62), has 

been explored [21-24]. This decomposition involves breaking down the nonabelian gauge field into two 

components: the Abelian field generated by Abelian monopoles and a modified nonabelian field from 

which the monopoles have been extracted. The abelian projection defined as coset decomposition of the 

nonabelian lattice gauge field U(s,μ) into the Abelian field u(s, μ) and the coset field C (s, μ) given as. 

 

(64) 

 

The Abelian gauge field can in turn be decomposed into the monopole and photon part. 

 

(65) 

The modified non Abelian gauge field is defined. 

 

(66) 

 

is the Abelian projection of and involves no monopoles. 

The monopole potential is calculated as. 

 

 

(67) 

 

 



 

 

Fig 6: Decomposition of interquark potential into monopole and modified potential for lattice size 

 at β= 6.0. [24] 

 

There are few conclusions to be drawn from the decomposition (64) that the monopole static potential 

also has string tension close to the non-Abelian and are in agreement with conjecture that monopole 

degrees of freedom are responsible for confinement and suggests that the monopole part is 

responsible for the classical part of the hadronic string energy and hence advocates the presence of 

monopole in QCD. 

Another widely employed technique, discussed independently in Section 3.2, has been introduced 

for extracting magnetic 

monopole degrees of freedom in a gauge-independent manner. In this method, the Abelian projection is 

defined through magnetic isometry, and the Abelian decomposition is employed to segregate the non-

Abelian monopoles. This separation enables the demonstration that the confining potential in QCD 

arises predominantly from the monopole. Figure 7 illustrates lattice QCD results that confirm 

monopole dominance in SU (2) QCD [25]. 

 

Fig 7: The full SU(2) potential and corresponding magnetic-monopole potential,  both 

plotted as functions of R on lattice at β = 2.4 

 

The lattice calculations demonstrate that the slope of the monopole component of the potential 

reproduces 91% of the slope of the full SU(2) potential over the given lattice [26]. This 

substantiates the magnetic monopole dominance in a gauge-invariant manner. Their work specifically 

reveals that the confining force in SU(2) QCD originates from the Abelian segment of the 

potential, with a more precise attribution to the monopole component of the Abelian projection. 



 

 

5. Discussion and Conclusion 

In this paper we have discussed the brief introduction of magnetic monopole given by Dirac and ‘t 

Hooft and Polyakov. Dual superconducting mechanism has been studied using Abelian projection and 

Field decomposition method with monopoles as elementary degree of freedom. Further Lattice QCD 

based on these two methods for the QQ potential in SU(2) and SU(3) QCD explained that the 

monopole part has potential almost equal to the total confining potential hence favours existence of 

monopoles in QCD. 
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