
 

Journal of Advances in Developmental Research (IJAIDR) 

E-ISSN: 0976-4844   ●   Website: www.ijaidr.com   ●   Email: editor@ijaidr.com 

 

IJAIDR25021581 Volume 16, Issue 2, July-December 2025 1 

 

Designing Scalable Streaming Data Pipelines 

with Apache Kafka Schema Enforcement, Real-

Time Cleansing, and Event-Driven RAG 

Patterns 

 

Saurabh Atri 
 

 satri@ieee.org, srbwin@gmail.com 

 

Abstract: 

Modern data products depend on low-latency, trustworthy streams that can evolve without 

breaking downstream applications. This article presents a practical blueprint for building scalable 

streaming data pipelines on Apache Kafka [1]. We focus on three pillars: (1) schema enforcement 

using a central registry and compatibility policies [2-4]; (2) real-time cleansing and enrichment with 

stateless and stateful operators on Kafka Streams or Apache Flink [5,6]; and (3) event-driven 

Retrieval-Augmented Generation (RAG) patterns where model inference is triggered by events and 

grounded in fresh, streamed context [11]. We provide reference architecture, configuration 

examples, correctness and cost metrics, and operational playbooks to reach predictable 

performance. 
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1. Introduction 

Data producers and consumers change at different speeds. Without strong contracts and online hygiene, 

pipelines accumulate technical and data debt: schema drifts, null floods, and out-of-order records. Kafka 

offers durable, scalable logs, exactly-once semantics, and backpressure-friendly consumers [1,7], but 

teams still need disciplined schema enforcement and cleansing to keep streams reliable. At the same time, 

applications increasingly require retrieval-augmented LLMs that react to events in near real time [11]. 

This article lays out a cohesive, production-friendly approach that addresses these needs end to end. 

 

2. Reference Architecture 

The reference stack separates the control plane (schemas, policies) from the data plane (topics, processors). 

Producers publish Avro/Protobuf messages that are registered in a Schema Registry with compatibility 

guarantees [2-4]. Kafka Streams or Flink jobs cleanse, deduplicate, and enrich events [5,6], writing 

trustworthy facts to curated topics and serving feature views. Common sources include application SDKs, 

IoT, and change data capture (CDC) streams such as Debezium [9]. An event-driven RAG service 

consumes curated facts, refreshes embeddings in a vector store (e.g., FAISS/HNSW/ScaNN) [12-14], and 

executes retrieval and generation when trigger events arrive. Observability and governance run across all 

layers. 
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Figure 1. Reference architecture for Kafka-based streaming with schema enforcement, cleansing, and 

event-driven RAG. 

 

3. Schema Enforcement 

A registry assigns immutable IDs to schema versions and enforces compatibility so producers and 

consumers can evolve independently [2]. 

Compatibility modes include Backward, Forward, and Full; choose based on reader/writer evolution needs 

[2]. 

Treat schemas as code in version control; require defaults for new optional fields; avoid destructive 

changes on hot topics [2,3]. 

Validate on write via serializers that check payloads against registered schemas; apply broker quotas and 

ACLs [1-4]. 

Example: Avro schema with a forward-compatible addition [3]. 

{ 

  "type": "record", 

  "name": "Payment", 

  "namespace": "io.example.payments", 

  "fields": [ 

    {"name": "payment_id", "type": "string"}, 

    {"name": "amount", "type": "double"}, 

    {"name": "currency", "type": "string"}, 

    {"name": "ts", "type": {"type":"long","logicalType":"timestamp-millis"}}, 

    {"name": "merchant_category", "type": ["null", "string"], "default": null} 

  ] 

} 

 

4. Real-Time Cleansing and Enrichment 

Stateless operators: normalize casing/encodings, standardize units, and route bad records to a dead-letter 

topic [5,6]. 
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Stateful operators: deduplicate with windows, reorder using grace periods, and compute aggregates; use 

RocksDB state stores with Streams or Flink backends [5,6,15]. 

Enrichment: joins and KV caches for low-latency lookups [5,6]. 

PII: prefer tokenization; use format-preserving encryption only when the format must be preserved. 

Kafka Streams example: deduplication with a time window [5]. 

KStream<String, Payment> payments = builder.stream("raw.payments"); 

KStream<String, Payment> deduped = payments 

  .selectKey((k,v) -> v.getPaymentId()) 

  .transformValues(() -> new DedupTransformer(Duration.ofMinutes(10), "seen-store")); 

deduped.to("curated.payments"); 

 

5. Event-Driven RAG Patterns 

Index facts as they change; trigger retrieval only on relevant events to reduce staleness and compute waste 

[11]. 

Indexing: chunk and embed curated facts; upsert to a vector store (FAISS/HNSW/ScaNN) [12-14]. 

Serving: on triggers, retrieve top‑k context and generate grounded answers [11]. 

Design events with routing keys, TTLs, and quality tags; separate raw from curated facts. 

 
Figure 2. Event-driven RAG: indexing curated facts, then retrieving context on demand when trigger 

events arrive. 

 

6. Operations: Scaling, Latency, and Reliability 

Partitions: scale by partitions and consumer instances; keep keys stable; use sticky partitioner when keys 

are sparse [1,8]. 

Latency budgets: monitor end‑to‑end p50/p95; split budgets across embed/retrieve/generate for RAG 

[11-14]; size consumer pools for bursts [1]. 

Exactly‑once semantics: idempotent producers and transactions (EOS v2) or deterministic deduplication 

[1,5,7]. 

Failure domains: rack‑aware replication, multi‑AZ, quotas to contain noisy neighbors [1]. 

Example latency budget for a curated stream and RAG call. 
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Stage Budget (p95) Notes 

Producer → Broker 20 ms Local AZ, batching enabled 

Broker → Cleansing 40 ms 1-2 partitions per core 

Cleansing → Curated 60 ms State store hits warmed 

Curated → Embed Upsert 150 ms Batch 16-64 chunks 

Trigger → Retrieve 80 ms Top‑k ANN within scope 

RAG Generate 300-800 ms Token limits, cache hits 

 

7. Security, Governance, and Cost Control 

Enforce authN/authZ, topic ACLs, and schema approvals; version runtime policy and keep audit trails [1-

4]. 

Encrypt in transit and at rest; store secrets in a vault [1]. 

Track lineage and decisions; for RAG, log context and citations for trust/debugging [11]. 

Control costs with right‑sized retention, tiered storage, and compacted topics for dimensions [1]. 

 

8. Evaluation and Benchmarks 

Correctness: schema‑validation pass rate, duplicate rate after dedup, enrichment hit rate [5,6]. 

Performance: throughput/partition, end‑to‑end latency, consumer lag, failover recovery [1]. 

RAG: context freshness, retrieval hit rate, grounding quality, cost per answer [11-14]. 

Load test with replay traffic; sweep partitions, batches, and consumer counts; test restarts and hot‑producer 

spikes [1]. 

 

9. Implementation Checklist 

• Register schemas with compatibility policies [2-4]. 

• Validate on write; reject incompatible payloads [2-4]. 

• Package cleansing operators; reuse across jobs [5,6]. 

• Separate raw, refined, curated topics; RAG reads curated only [11-14]. 

• Size partitions and apply sticky partitioning if needed [1,8]. 

• Instrument latency, lag, dedup hit rate, DLQ volume [1]. 

• Enforce ACLs/TLS/secret management [1-4]. 

• Game day: broker failover, backlog catch‑up, schema evolution [1,2]. 

 

10. Conclusion 

Kafka moves events at scale; contracts and hygiene make them dependable. Schema‑first design, real‑time 

cleansing, and event‑driven RAG let one backbone serve analytics and AI with predictable cost and 

reliability. 
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