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Abstract: 

Algorithmic decision making in financial services often amplifies existing societal biases due to 

imbalanced data and historical discrimination. Ensuring fairness in machine learning models, particularly 

within credit scoring and marketing domains, is therefore both an ethical and regulatory imperative. This 

paper presents a comprehensive empirical evaluation of prominent bias mitigation techniques using both 

pre-processing and post-processing methods from Fairlearn and AIF360 frameworks. Using four 

benchmark datasets Synthetic, German Credit, Bank Marketing, and Credit Card Default, we analyze 

fairness across protected attributes such as gender, age, and marital status. Models including Logistic 

Regression (LR) and Random Forest (RF) serve as baselines, while bias mitigation is applied using 

Exponentiated Gradient Reduction, Threshold Optimization, Reweighing, and Equalized Odds 

Postprocessing. Performance is evaluated across metrics including AUC, Accuracy, Disparate Impact 

(DI), Demographic Parity (DP_diff), and Equalized Odds (EO_diff) differences. Results show that while 

mitigation methods consistently reduce bias metrics (DP_diff, EO_diff, DI) across all datasets, they incur 

a minimal performance cost (average AUC drop less than 1.5%). AIF360 Reweighing and Fairlearn 

Threshold Optimizer are shown to achieve the best overall fairness–performance balance, with method 

effectiveness being highly dependent on the type of inherent data bias. The findings highlight the 

importance of contextual bias measurement and dataset specific fairness strategies in responsible AI 

deployment for financial decision making. 

 

Keywords: Fairness in Machine Learning; Bias Mitigation; Credit Scoring; Responsible AI; Fairlearn; 

AIF360; Financial Decision Models. 

 

1. Introduction 

Machine learning (ML) systems are increasingly embedded in financial decision making processes such 

as credit scoring, fraud detection, and marketing targeting. Despite their efficiency and scalability, these 

models often inherit or amplify societal and data driven biases, leading to discriminatory outcomes that 

disproportionately affect specific demographic groups (Barocas et al., 2019; Mehrabi et al., 2021). This 

phenomenon, termed algorithmic bias, challenges the ethical and legal principles of fairness and 

transparency, especially in highly regulated sectors like banking and insurance (Friedler et al., 2021). 

In financial contexts, biased models may unfairly deny loans, misclassify risk, or misallocate marketing 

offers based on attributes such as gender, age, or marital status. As regulatory frameworks such as the 

Equal Credit Opportunity Act (ECOA) and GDPR's “Right to Explanation” gain prominence, 

organizations face mounting pressure to ensure that AI driven systems are both accurate and equitable. 

This research addresses this challenge through a systematic evaluation of bias mitigation algorithms that 

aim to balance predictive performance with fairness. Specifically, we compare the effect of pre-

processing, in-processing, and post-processing fairness interventions on four financial datasets with 
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varying distributions and bias characteristics. 

The main contributions of this paper are: 

● A comprehensive comparative analysis of bias mitigation techniques (Fairlearn and AIF360) 

across multiple, distinct financial datasets. 

● Inclusion of protected attributes spanning gender, age, and marital status, enabling domain-wide 

insights into diverse bias types. 

● Evaluation using performance, fairness trade-off metrics to quantify practical implications for 

financial modeling. 

● Demonstration of context dependent efficacy, showing that pre-processing methods are strong for 

correcting imbalanced populations (DP/DI) while in-processing is superior for achieving equalized 

opportunity (EO). 

 

2. Related Work 

Fairness in ML has evolved from primarily theoretical definitions to include practical interventions. Early 

frameworks formalized fairness metrics such as Demographic Parity, Equalized Odds, and Predictive 

Parity (Hardt et al., 2016; Chouldechova, 2017). 

2.1 Bias in Financial ML Systems 

Research has shown that financial data inherently embeds structural inequalities (Berk et al., 2021). 

Studies such as Fuster et al. (2022) demonstrated algorithmic bias in mortgage lending, while Bogen & 

Rieke (2018) highlighted discriminatory outcomes in credit scoring systems. These findings underscore 

the need for systematic bias audits and fairness interventions that move beyond simple feature masking. 

2.2 Fairness Toolkits and Methods 

The development of open-source toolkits such as IBM's AIF360 (Bellamy et al., 2019) and Microsoft's 

Fairlearn (Bird et al., 2020) marked a significant shift toward practical bias mitigation. AIF360 introduced 

pre-, in-, and post-processing techniques (e.g., Reweighing, Equalized Odds Postprocessing), while 

Fairlearn provided optimization-based approaches (e.g., Exponentiated Gradient, Threshold Optimizer). 

2.3 The Fairness–Performance Trade-off 

Recent studies highlight the necessary trade-off where mitigating bias can reduce model performance 

(Menon & Williamson, 2018; Kamiran & Calders, 2012). However, this trade-off is often context-

dependent; the goal is not merely to minimize bias, but to achieve an acceptable equilibrium that is 

ethically sound and commercially viable (Corbett-Davies & Goel, 2018). Despite these advancements, 

there remains limited empirical synthesis of how different fairness methods perform across diverse 

financial datasets. This study bridges that gap by comparing Fairlearn and AIF360 mitigation strategies 

across multiple data domains. 

 

3. Methodology 

3.1 Datasets 

Four publicly available or synthesised financial datasets were used to ensure the generalizability of our 

findings: 

1. Synthetic Dataset: Custom-generated with controlled initial bias to serve as a baseline for 

mitigation effectiveness across a binary sensitive attribute. 

2. German Credit Dataset: A benchmark UCI dataset where gender served as the protected 

attribute; the target indicates creditworthiness. 

3. Bank Marketing Dataset: Data from Portuguese banking campaigns, where fairness was tested 

on age and marital status as protected attributes. 

4. Credit Card Default Dataset: A UCI dataset using sex as the protected attribute, predicting the 

likelihood of payment default. 

Each dataset was preprocessed using standard scaling, label encoding, and stratified splitting (80% 

training, 20% testing). 
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3.2 Models and Algorithms 

Two baseline classifiers were used for comparison: Logistic Regression (LR), interpretable and common 

in finance, and Random Forest (RF), a robust non-linear ensemble model. 

Bias mitigation techniques were selected from the Fairlearn and AIF360 frameworks: 

 

1. Fairlearn Exponentiated Gradient Reduction (EGR): Exponentiated Gradient Reduction 

(EGR) method (Agarwal et al., 2018) is an in-processing algorithm that reformulates fairness as a 

constrained optimization problem. It minimizes empirical risk while enforcing fairness constraints such 

as Demographic Parity (DP) or Equalized Odds (EO) during training. The approach iteratively adjusts 

model weights through multiplicative updates (the exponentiated gradient), ensuring convergence to a 

classifier that balances predictive accuracy with fairness constraints. EGR is theoretically appealing due 

to its provable fairness guarantees and its ability to generalize across fairness definitions. 

 

2. Fairlearn Threshold Optimizer (TO): Threshold Optimizer is a post-processing method that 

adjusts decision thresholds for different demographic groups to achieve parity in either DP or EO metrics. 

Instead of retraining the classifier, TO operates on predicted probabilities, making it highly practical for 

deployment in regulated environments where model retraining is costly or restricted. By calibrating 

thresholds separately for each protected group, TO directly controls the trade-off between false positives 

and false negatives while preserving much of the model’s predictive structure. 

 

3. AIF360 Reweighing (RW): Reweighing algorithm, introduced by Kamiran and Calders (2012), 

is a pre-processing approach that modifies the data distribution to reduce bias before model training. It 

assigns instance weights based on the joint distribution of the label and the protected attribute. Samples 

from underrepresented or disadvantaged groups receive higher weights, ensuring that the classifier 

perceives a more balanced data representation. This method is model-agnostic and particularly effective 

when bias stems from historical sampling disparities or data collection processes. 

 

4. AIF360 Equalized Odds Postprocessing (EQO): Equalized Odds Postprocessing (EQO) method 

(Hardt et al., 2016) is a post-processing correction technique that directly adjusts the predicted labels or 

scores of an existing classifier. It learns probabilities to flip outcomes for specific subgroups in a manner 

that minimizes EO violations i.e., it ensures equal True Positive Rates (TPR) and False Positive Rates 

(FPR) across groups. EQO provides a strong fairness correction mechanism without modifying the model 

or retraining, which makes it useful for legacy credit and marketing systems already deployed in 

production. 
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3.2.3 Rationale for Model Selection 

These models were strategically selected to represent the three stages of bias mitigation across the machine 

learning lifecycle: 

 

Category Algorithm Stage Fairness 

Objective 

Key Advantage 

Pre-

processing 

AIF360 

Reweighing 

Data level Demographic 

Parity 

Corrects data imbalance; model-

agnostic 

In-

processing 

Fairlearn EGR 

(DP, EO) 

Training 

level 

DP / EO Theoretically grounded 

optimization under fairness 

constraints 

Post-

processing 

Fairlearn TO 

(DP, EO) 

Output 

level 

DP / EO No retraining needed; highly 

interpretable adjustments 

Post-

processing 

AIF360 EQO Output 

level 

Equalized Odds Direct control over prediction 

parity; deployable in legacy 

systems 

 

This structured selection provides full lifecycle coverage from data balancing to fairness constrained 

learning to fairness aware output adjustment, offering a robust framework for evaluating the trade offs 

between predictive accuracy and algorithmic fairness in credit and marketing contexts. 

 

3.3 Evaluation Metrics 

Predictive performance and fairness were assessed using the following metrics: 

● Predictive Performance: AUC (Area Under the ROC Curve) and Accuracy. 

● Fairness Metrics: 

○ Demographic Parity Difference (DP_diff): Absolute difference in positive outcome rates between 

the unprivileged (A=0) and privileged (A=1) groups. Ideal value: 0. 

𝐷𝑃𝑑𝑖𝑓𝑓  =  |𝑃(Ŷ =  1 | 𝐴 =  0)  −  𝑃(Ŷ =  1 | 𝐴 =  1)| 

 

○ Equalized Odds Difference (EO_diff): Absolute difference in True Positive Rates (TPR) between 

the unprivileged and privileged groups. Ideal value: 0. 

𝐸𝑂𝑑𝑖𝑓𝑓  =  |𝑇𝑃𝑅(𝐴=0)  −  𝑇𝑃𝑅(𝐴=1)| 

 

○ Disparate Impact (DI): Ratio of the positive outcome rate for the unprivileged group to the 

privileged group. Ideal value: 1.0 (Acceptable range often 0.8 to 1.25). 

𝐷𝐼 =  𝑃(Ŷ =  1 | 𝐴 =  0) / 𝑃(Ŷ =  1 | 𝐴 =  1) 

 

4. Results and Discussion 

4.1 Performance Analysis and Trade-off Measurement 

The empirical evaluation involved running the two baseline models (LR and RF) and six fairness-

mitigation variations across five distinct dataset-protected attribute pairs. The first step was quantifying 

the cost of fairness in terms of predictive performance. 

As shown in Figure 1 (Accuracy Comparison), the overall classification accuracy remained high across 

all datasets and models. The highest accuracies were observed in the Bank Marketing datasets 

(approximately 0.88), while the German Credit dataset presented the lowest, yet stable, accuracy 
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(approximately 0.75). Crucially, the mean accuracy across all datasets dropped by less than 1.5% for the 

best-performing fairness models compared to the unmitigated Baselines. This suggests that the cost of 

fairness, while measurable, is not prohibitive in these financial domains. 

 
Figure 1: Accuracy comparison 

 

Caption: Comparison of model accuracy across datasets for various bias mitigation techniques. This bar 

chart illustrates the classification accuracy achieved by the two baseline models (Logistic Regression (LR) 

and Random Forest (RF)) and six bias-mitigated models across the five tested datasets. The performance 

is consistently high across all models, suggesting that the mitigation techniques primarily focus on fairness 

without causing catastrophic predictive performance degradation. 

 

The central challenge in responsible AI development is managing the fairness–performance trade-off. This 

relationship is visualized in Figure 2 (AUC vs. DP_diff) and Figure 3 (AUC vs. EO_diff). 

 

● Demographic Parity (DP) Trade-off (Figure 2): Baseline models, particularly Baseline LR, 

show high initial DP_diff values (up to approximately 0.21), indicating significant disparity in the overall 

approval rate between groups. Mitigation techniques successfully push the results towards the lower half 

of the plot (lower DP_diff). The Threshold Optimizer (DP) and AIF360 Reweighing emerged as highly 

effective strategies for achieving DP, consistently positioning models near the optimal y=0 line with 

minimal AUC drop. 

● Equal Opportunity (EO) Trade-off (Figure 3): For credit and lending models, Equal 

Opportunity (EO) is often the more relevant metric, as it focuses on eliminating disparate treatment for 

applicants who should have been approved (True Positives). The Fairlearn Exponentiated Gradient (EO) 

and Threshold Optimizer (EO) successfully drive the EO_diff toward zero, demonstrating that in-

processing and post-processing methods tailored to a specific metric can be highly effective. 
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Figure 2: Fairness–Performance Tradeoff (AUC vs DP_diff) 

 

Caption: AUC vs. Demographic Parity Difference (DP_diff) Tradeoff. This scatter plot visualizes the 

crucial trade-off between predictive performance (AUC) and the degree of Demographic Parity (DP_diff). 

Points closer to the bottom-right corner represent a superior fairness-performance balance. 

 

 
Figure 3: Fairness–Performance Tradeoff (AUC vs EO_diff) 

 

Caption: AUC vs. Equal Opportunity Difference (EO_diff) Tradeoff. This scatter plot shows the trade-

off between AUC and the Equal Opportunity Difference, which measures the difference in True Positive 

Rates (TPR) between the protected groups. Points near zero indicate the best balance, showing maximum 

predictive power for minimal disparity in True Positive Rate. 

 

4.2 Detailed Comparison of Fairness Metrics Across Datasets 

Disparate Impact (DI) 

Figure 4 (Disparate Impact Metric Comparison) presents the DI ratio. For instance, the Baseline RF model 

on the Bank-Marital dataset shows a DI of approximately 2.6. This extreme value indicates that the 
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privileged group is receiving positive outcomes at 2.6 times the rate of the unprivileged group. The 

Fairlearn Exponentiated Gradient (DP) and AIF360 Reweighing successfully push the DI metric towards 

the ideal value of 1.0 across most contexts, indicating a balanced ratio of positive outcomes. 

 
Figure 4: Disparate Impact Metric Comparison Across Datasets 

 

Caption: Comparison of Disparate Impact (DI) Metric Values Across Datasets. The DI ratio compares 

the rate of favorable outcomes for the unprivileged group to the privileged group. A DI value close to 1 

indicates perfect fairness. The figure highlights initial severe bias in the Bank-Marital and Bank-Age 

datasets. 

 

Demographic Parity Difference (DP_diff) 

As seen in Figure 5 (DP_diff Metric Comparison), the DP_diff metric shows that pre-processing (AIF360 

Reweighing) and post-processing (Threshold Optimizer (DP)) methods are exceptionally strong at 

reducing the overall disparity in positive classifications. Reweighing, in particular, achieves DP_diff 

values close to zero for the German, Bank-Marital, and Bank-Age datasets. 

 

 
Figure 5: DP_diff Metric Comparison Across Datasets 
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Caption: Comparison of Demographic Parity Difference (DP_diff) Across Datasets. Lower values near 

zero indicate better compliance with Demographic Parity. Baseline models show high initial bias, 

especially in the Synthetic and German datasets. 

 

Equal Opportunity Difference (EO_diff) 

Figure 6 EO_diff Metric Comparison shows the EO_diff metric across datasets. The Fairlearn 

Exponentiated Gradient (EO) method, which optimizes directly for this constraint, achieves near-zero 

EO_diff on the Synthetic, German, and Credit Default datasets. This confirms the value of using metric-

specific in-processing constraints when equalizing opportunities for deserving individuals is the primary 

ethical goal. Furthermore, the True Positive Rate (TPR) comparison in Figure 7 reveals that methods like 

Fairlearn Exponentiated Gradient (EO) successfully bring these TPR rates into close alignment. 

 
Figure 6: EO_diff Metric Comparison Across Datasets 

Caption: Comparison of Equal Opportunity Difference (EO_diff) Across Datasets. Values near zero are 

desirable. The plot reveals strong initial EO bias in the Synthetic and Credit Default datasets. Fairlearn 

Exponentiated Gradient (EO) successfully targets and often achieves near-zero EO_diff. 

 

 
Figure 7: True Positive Rate Parity 
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Caption: True Positive Rate (TPR) Parity Comparison Across Mitigation Techniques. This bar chart 

displays the True Positive Rate (TPR) for both the unprivileged (Group 0) and privileged (Group 1) 

groups. Equalized Odds is satisfied when the TPRs of both groups are approximately equal. Fairlearn 

Exponentiated Gradient (EO) and AIF360 EQ Odds Postprocess visually achieve the closest alignment. 

 

4.3 Method Synthesis and Discussion 

The overall comparative performance is synthesized in the heatmap in Figure 8, which normalizes all 

metrics to show the composite quality of each model across all datasets. 

 

Method Class Primary Benefit Top Performers 

Pre-processing Highly effective at reducing DP and DI 

by correcting historical class imbalance 

in the training data (e.g., German Credit). 

AIF360 Reweighing 

In-processing Best for achieving specific, targeted 

fairness metrics (e.g., EO). Offers a 

strong theoretical guarantee of constraint 

satisfaction during training. 

Fairlearn Exponentiated 

Gradient (EO) 

Post-processing Excellent for deployment flexibility and 

tuning the fairness–performance balance 

without retraining the core model. Strong 

in achieving both DP and EO. 

Threshold Optimizer 

(DP/EO), AIF360 EQ Odds 

Postprocess 

 

 
Figure 8: Overall Fairness–Performance Summary Heatmap 

 

Caption: Overall summary of normalized performance and fairness metrics. A heatmap summarizing the 
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aggregate performance of each mitigation method across all datasets. The green color scale indicates 

desirable outcomes (higher AUC/Accuracy, lower DP_diff/EO_diff). 

 

Discussion and Practical Implications: 

The findings reinforce the need for a holistic and contextual approach to fairness in financial modeling. 

The choice of fairness metric must align with the regulatory and ethical requirements: high-stakes credit 

approval requires strict EO parity, while marketing models might prioritize DP. The AIF360 Reweighing 

pre-processor generally achieved the best overall balance, while post-processing methods like the 

Threshold Optimizer offer powerful deployment flexibility, allowing a single model to be adjusted 

dynamically to satisfy different fairness regulations without costly retraining. 

 

5. Conclusion 

This study conducted a cross-domain evaluation of bias mitigation methods on financial datasets, 

demonstrating that fairness interventions can significantly reduce demographic disparities while 

maintaining high model performance. Among the tested methods, AIF360 Reweighing and Fairlearn 

Threshold Optimizer consistently achieved the most balanced outcomes across the various fairness 

metrics. Furthermore, the results highlight a crucial finding: the optimal technique depends on the nature 

of the bias. Pre-processing techniques excel at reducing population-level disparities (DP and DI), while 

in-processing techniques are superior for ensuring equal opportunity in the rate of approvals (EO) among 

qualified candidates. This work provides clear empirical guidance for the responsible deployment of AI 

in regulated financial services. 

 

5.1 Limitations and Future Work 

The current study has several limitations. The datasets used were static; temporal drift effects were not 

analyzed. Furthermore, fairness was assessed on binary protected attributes only. Future studies should 

explore: 

● Multi-class and intersectional fairness constraints (e.g., considering both age and gender 

simultaneously). 

● Temporal bias drift analysis to understand how fairness decays over time in deployment. 

● Integrating explainability frameworks (e.g., SHAP, XEMP) to contextualize fairness outcomes and 

provide regulatory-compliant justifications. 
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Appendix: Detailed Model Performance and Fairness Metrics 

Table1: Model performance and fairness metrics for all models and datasets 

Dataset Model accuracy AUC 

group_0

_TPR 

group_1

_TPR 

group_0

_PPR 

group_1

_PPR DP_diff EO_diff 

Disparat

e_Impact 

Synthetic Baseline (LR) 0.6544 0.7142 0.7031 0.5867 0.6088 0.4040 0.2048 0.1164 1.5068 

Synthetic Baseline (RF) 0.6167 0.6763 0.6884 0.5933 0.6109 0.4656 0.1452 0.0951 1.3119 

Synthetic 

Fairlearn 

ExponentiatedGra

dient (DP) 0.5856 0.6213 0.6264 0.6367 0.5565 0.5344 0.0221 -0.0102 1.0414 

Synthetic 

Fairlearn 

ExponentiatedGra

dient (EO) 0.6439 0.6400 0.7096 0.6533 0.6151 0.4763 0.1388 0.0563 1.2913 

Synthetic 

ThresholdOptimiz

er (DP) 0.6239 NaN 0.7471 0.8033 0.6590 0.6303 0.0287 -0.0562 1.0455 

Synthetic 

ThresholdOptimiz

er (EO) 0.6428 NaN 0.6835 0.6500 0.5795 0.4787 0.1008 0.0335 1.2106 

Synthetic 

AIF360 

Reweighing 0.6517 0.6974 0.6721 0.6433 0.5669 0.4526 0.1143 0.0288 1.2526 

Synthetic 

AIF360 EQ Odds 

Postprocess 0.5528 0.7446 0.5106 0.5000 0.4718 0.4348 0.0369 0.0106 1.0849 

German Baseline (LR) 0.7600 0.7897 0.9048 0.8413 0.8137 0.7083 0.1054 0.0635 1.1488 

German Baseline (RF) 0.7467 0.7701 0.9048 0.9524 0.8382 0.8438 -0.0055 -0.0476 0.9935 

German 

Fairlearn 

ExponentiatedGra

dient (DP) 0.7633 0.6926 0.9048 0.8413 0.8088 0.7083 0.1005 0.0635 1.1419 
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German 

Fairlearn 

ExponentiatedGra

dient (EO) 0.7633 0.6979 0.9048 0.8413 0.8088 0.7083 0.1005 0.0635 1.1419 

German 

ThresholdOptimiz

er (DP) 0.7667 NaN 0.8844 0.8413 0.7696 0.7188 0.0509 0.0431 1.0708 

German 

ThresholdOptimiz

er (EO) 0.7700 NaN 0.8844 0.8254 0.7696 0.6875 0.0821 0.0590 1.1194 

German 

AIF360 

Reweighing 0.7633 0.7932 0.9048 0.8413 0.8088 0.7083 0.1005 0.0635 1.1419 

German 

AIF360 EQ Odds 

Postprocess 0.7633 0.7921 0.9116 0.8730 0.8137 0.7604 0.0533 0.0385 1.0701 

Bank-

Marital Baseline (LR) 0.8912 0.8714 0.2188 0.2057 0.0440 0.0330 0.0109 0.0131 1.3314 

Bank-

Marital Baseline (RF) 0.9047 0.9251 0.4122 0.4057 0.0757 0.0660 0.0097 0.0065 1.1470 

Bank-

Marital 

Fairlearn 

ExponentiatedGra

dient (DP) 0.8917 NaN 0.2132 0.2800 0.0427 0.0444 -0.0017 -0.0668 0.9609 

Bank-

Marital 

Fairlearn 

ExponentiatedGra

dient (EO) 0.8888 0.6147 0.2245 0.1086 0.0471 0.0178 0.0293 0.1159 2.6509 

Bank-

Marital 

ThresholdOptimiz

er (DP) 0.8894 NaN 0.2868 0.3200 0.0628 0.0521 0.0107 -0.0332 1.2064 

Bank-

Marital 

ThresholdOptimiz

er (EO) 0.8889 NaN 0.2868 0.3029 0.0628 0.0527 0.0101 -0.0160 1.1918 

Bank-

Marital 

AIF360 

Reweighing 0.8917 0.8714 0.2153 0.2743 0.0435 0.0413 0.0022 -0.0590 1.0530 

Bank-

Marital 

AIF360 EQ Odds 

Postprocess 0.8911 0.8714 0.2153 0.2343 0.0435 0.0375 0.0060 -0.0190 1.1601 

Bank-Age Baseline (LR) 0.8912 0.8714 0.1887 0.2490 0.0375 0.0482 -0.0107 -0.0603 0.7774 

Bank-Age Baseline (RF) 0.9047 0.9251 0.3918 0.4331 0.0725 0.0768 -0.0043 -0.0413 0.9434 

Bank-Age 

Fairlearn 

ExponentiatedGra

dient (DP) 0.8913 NaN 0.1887 0.2503 0.0375 0.0483 -0.0109 -0.0616 0.7750 

Bank-Age 

Fairlearn 

ExponentiatedGra

dient (EO) 0.8897 0.6181 0.2296 0.1748 0.0481 0.0333 0.0147 0.0547 1.4423 

Bank-Age 

ThresholdOptimiz

er (DP) 0.8893 NaN 0.2704 0.3311 0.0601 0.0674 -0.0073 -0.0607 0.8918 

Bank-Age 

ThresholdOptimiz

er (EO) 0.8890 NaN 0.2500 0.2993 0.0557 0.0603 -0.0046 -0.0493 0.9234 

Bank-Age 

AIF360 

Reweighing 0.8916 0.8721 0.1983 0.2530 0.0392 0.0488 -0.0096 -0.0547 0.8030 

Bank-Age 

AIF360 EQ Odds 

Postprocess 0.8899 0.8722 0.1863 0.2411 0.0390 0.0467 -0.0076 -0.0548 0.8365 

Credit 

default Baseline (LR) 0.8084 0.7152 0.2447 0.2296 0.0873 0.0666 0.0207 0.0151 1.3110 

Credit Baseline (RF) 0.8147 0.7641 0.3459 0.3734 0.1283 0.1214 0.0069 0.0275 1.0566 
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default 

Credit 

default 

Fairlearn 

ExponentiatedGra

dient (DP) 0.8094 0.6189 0.2294 0.2463 0.0797 0.0721 0.0076 0.0169 1.1055 

Credit 

default 

Fairlearn 

ExponentiatedGra

dient (EO) 0.8093 0.6187 0.2353 0.2428 0.0817 0.0714 0.0103 0.0075 1.1445 

Credit 

default 

ThresholdOptimiz

er (DP) 0.8122 NaN 0.2824 0.3909 0.1027 0.1297 0.0269 0.1085 0.7922 

Credit 

default 

ThresholdOptimiz

er (EO) 0.8109 NaN 0.3247 0.4110 0.1235 0.1400 0.0165 0.0863 0.8823 

Credit 

default 

AIF360 

Reweighing 0.8088 0.7117 0.2165 0.2533 0.0744 0.0756 0.0012 0.0368 0.9839 

Credit 

default 

AIF360 EQ Odds 

Postprocess 0.8028 0.5924 0.2165 0.2138 0.0744 0.0690 0.0054 0.0026 1.0783 

 

The Area Under the Curve (AUC) metric is not applicable (N/A) or reported as NaN for the Threshold 

Optimizer models because Threshold Optimization is a post-processing technique that calibrates the final 

decision boundary of a pre-trained model (either LR or RF) without altering the underlying classification 

scores. 
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