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Abstract:

Algorithmic decision making in financial services often amplifies existing societal biases due to
imbalanced data and historical discrimination. Ensuring fairness in machine learning models, particularly
within credit scoring and marketing domains, is therefore both an ethical and regulatory imperative. This
paper presents a comprehensive empirical evaluation of prominent bias mitigation techniques using both
pre-processing and post-processing methods from Fairlearn and AIF360 frameworks. Using four
benchmark datasets Synthetic, German Credit, Bank Marketing, and Credit Card Default, we analyze
fairness across protected attributes such as gender, age, and marital status. Models including Logistic
Regression (LR) and Random Forest (RF) serve as baselines, while bias mitigation is applied using
Exponentiated Gradient Reduction, Threshold Optimization, Reweighing, and Equalized Odds
Postprocessing. Performance is evaluated across metrics including AUC, Accuracy, Disparate Impact
(DI), Demographic Parity (DP_diff), and Equalized Odds (EO_diff) differences. Results show that while
mitigation methods consistently reduce bias metrics (DP_diff, EO_diff, DI) across all datasets, they incur
a minimal performance cost (average AUC drop less than 1.5%). AIF360 Reweighing and Fairlearn
Threshold Optimizer are shown to achieve the best overall fairness—performance balance, with method
effectiveness being highly dependent on the type of inherent data bias. The findings highlight the
importance of contextual bias measurement and dataset specific fairness strategies in responsible Al
deployment for financial decision making.

Keywords: Fairness in Machine Learning; Bias Mitigation; Credit Scoring; Responsible Al; Fairlearn;
AIF360; Financial Decision Models.

1. Introduction

Machine learning (ML) systems are increasingly embedded in financial decision making processes such
as credit scoring, fraud detection, and marketing targeting. Despite their efficiency and scalability, these
models often inherit or amplify societal and data driven biases, leading to discriminatory outcomes that
disproportionately affect specific demographic groups (Barocas et al., 2019; Mehrabi et al., 2021). This
phenomenon, termed algorithmic bias, challenges the ethical and legal principles of fairness and
transparency, especially in highly regulated sectors like banking and insurance (Friedler et al., 2021).

In financial contexts, biased models may unfairly deny loans, misclassify risk, or misallocate marketing
offers based on attributes such as gender, age, or marital status. As regulatory frameworks such as the
Equal Credit Opportunity Act (ECOA) and GDPR's “Right to Explanation” gain prominence,
organizations face mounting pressure to ensure that Al driven systems are both accurate and equitable.
This research addresses this challenge through a systematic evaluation of bias mitigation algorithms that
aim to balance predictive performance with fairness. Specifically, we compare the effect of pre-
processing, in-processing, and post-processing fairness interventions on four financial datasets with
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varying distributions and bias characteristics.
The main contributions of this paper are:

° A comprehensive comparative analysis of bias mitigation techniques (Fairlearn and AIF360)
across multiple, distinct financial datasets.

° Inclusion of protected attributes spanning gender, age, and marital status, enabling domain-wide
insights into diverse bias types.

° Evaluation using performance, fairness trade-off metrics to quantify practical implications for
financial modeling.

° Demonstration of context dependent efficacy, showing that pre-processing methods are strong for

correcting imbalanced populations (DP/DI) while in-processing is superior for achieving equalized
opportunity (EO).

2. Related Work

Fairness in ML has evolved from primarily theoretical definitions to include practical interventions. Early
frameworks formalized fairness metrics such as Demographic Parity, Equalized Odds, and Predictive
Parity (Hardt et al., 2016; Chouldechova, 2017).

2.1 Bias in Financial ML Systems

Research has shown that financial data inherently embeds structural inequalities (Berk et al., 2021).
Studies such as Fuster et al. (2022) demonstrated algorithmic bias in mortgage lending, while Bogen &
Rieke (2018) highlighted discriminatory outcomes in credit scoring systems. These findings underscore
the need for systematic bias audits and fairness interventions that move beyond simple feature masking.
2.2 Fairness Toolkits and Methods

The development of open-source toolkits such as IBM's AIF360 (Bellamy et al., 2019) and Microsoft's
Fairlearn (Bird et al., 2020) marked a significant shift toward practical bias mitigation. AIF360 introduced
pre-, in-, and post-processing techniques (e.g., Reweighing, Equalized Odds Postprocessing), while
Fairlearn provided optimization-based approaches (e.g., Exponentiated Gradient, Threshold Optimizer).
2.3 The Fairness—Performance Trade-off

Recent studies highlight the necessary trade-off where mitigating bias can reduce model performance
(Menon & Williamson, 2018; Kamiran & Calders, 2012). However, this trade-off is often context-
dependent; the goal is not merely to minimize bias, but to achieve an acceptable equilibrium that is
ethically sound and commercially viable (Corbett-Davies & Goel, 2018). Despite these advancements,
there remains limited empirical synthesis of how different fairness methods perform across diverse
financial datasets. This study bridges that gap by comparing Fairlearn and AIF360 mitigation strategies
across multiple data domains.

3. Methodology
3.1 Datasets
Four publicly available or synthesised financial datasets were used to ensure the generalizability of our

findings:

1. Synthetic Dataset: Custom-generated with controlled initial bias to serve as a baseline for
mitigation effectiveness across a binary sensitive attribute.

2. German Credit Dataset: A benchmark UCI dataset where gender served as the protected
attribute; the target indicates creditworthiness.

3. Bank Marketing Dataset: Data from Portuguese banking campaigns, where fairness was tested
on age and marital status as protected attributes.

4. Credit Card Default Dataset: A UCI dataset using sex as the protected attribute, predicting the

likelihood of payment default.
Each dataset was preprocessed using standard scaling, label encoding, and stratified splitting (80%
training, 20% testing).
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3.2 Models and Algorithms

Two baseline classifiers were used for comparison: Logistic Regression (LR), interpretable and common
in finance, and Random Forest (RF), a robust non-linear ensemble model.

Bias mitigation techniques were selected from the Fairlearn and AIF360 frameworks:

1. Fairlearn Exponentiated Gradient Reduction (EGR): Exponentiated Gradient Reduction
(EGR) method (Agarwal et al., 2018) is an in-processing algorithm that reformulates fairness as a
constrained optimization problem. It minimizes empirical risk while enforcing fairness constraints such
as Demographic Parity (DP) or Equalized Odds (EO) during training. The approach iteratively adjusts
model weights through multiplicative updates (the exponentiated gradient), ensuring convergence to a
classifier that balances predictive accuracy with fairness constraints. EGR is theoretically appealing due
to its provable fairness guarantees and its ability to generalize across fairness definitions.

2. Fairlearn Threshold Optimizer (TO): Threshold Optimizer is a post-processing method that
adjusts decision thresholds for different demographic groups to achieve parity in either DP or EO metrics.
Instead of retraining the classifier, TO operates on predicted probabilities, making it highly practical for
deployment in regulated environments where model retraining is costly or restricted. By calibrating
thresholds separately for each protected group, TO directly controls the trade-off between false positives
and false negatives while preserving much of the model’s predictive structure.

3. AIF360 Reweighing (RW): Reweighing algorithm, introduced by Kamiran and Calders (2012),
is a pre-processing approach that modifies the data distribution to reduce bias before model training. It
assigns instance weights based on the joint distribution of the label and the protected attribute. Samples
from underrepresented or disadvantaged groups receive higher weights, ensuring that the classifier
perceives a more balanced data representation. This method is model-agnostic and particularly effective
when bias stems from historical sampling disparities or data collection processes.

4. AIF360 Equalized Odds Postprocessing (EQO): Equalized Odds Postprocessing (EQO) method
(Hardt et al., 2016) is a post-processing correction technique that directly adjusts the predicted labels or
scores of an existing classifier. It learns probabilities to flip outcomes for specific subgroups in a manner
that minimizes EO violations i.e., it ensures equal True Positive Rates (TPR) and False Positive Rates
(FPR) across groups. EQO provides a strong fairness correction mechanism without modifying the model
or retraining, which makes it useful for legacy credit and marketing systems already deployed in
production.
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3.2.3 Rationale for Model Selection
These models were strategically selected to represent the three stages of bias mitigation across the machine
learning lifecycle:

Category Algorithm Stage Fairness Key Advantage
Objective

Pre- AIF360 Data level Demographic Corrects data imbalance; model-

processing Reweighing Parity agnostic
In- Fairlearn EGR Training DP/EO Theoretically grounded
processing (DP, EO) level optimization under fairness
constraints

Post- Fairlearn TO Output DP/EO No retraining needed; highly
processing (DP, EO) level interpretable adjustments

Post- AIF360 EQO Output Equalized Odds Direct control over prediction
processing level parity; deployable in legacy

systems

This structured selection provides full lifecycle coverage from data balancing to fairness constrained
learning to fairness aware output adjustment, offering a robust framework for evaluating the trade offs
between predictive accuracy and algorithmic fairness in credit and marketing contexts.

3.3 Evaluation Metrics

Predictive performance and fairness were assessed using the following metrics:

° Predictive Performance: AUC (Area Under the ROC Curve) and Accuracy.
° Fairness Metrics:

o Demographic Parity Difference (DP_diff): Absolute difference in positive outcome rates between
the unprivileged (A=0) and privileged (A=1) groups. Ideal value: 0.
DPaisy =

el Equalized Odds Difference (EO_diff): Absolute difference in True Positive Rates (TPR) between
the unprivileged and privileged groups. Ideal value: 0.

o Disparate Impact (DI): Ratio of the positive outcome rate for the unprivileged group to the
privileged group. Ideal value: 1.0 (Acceptable range often 0.8 to 1.25).

4. Results and Discussion

4.1 Performance Analysis and Trade-off Measurement

The empirical evaluation involved running the two baseline models (LR and RF) and six fairness-
mitigation variations across five distinct dataset-protected attribute pairs. The first step was quantifying
the cost of fairness in terms of predictive performance.

As shown in Figure 1 (Accuracy Comparison), the overall classification accuracy remained high across
all datasets and models. The highest accuracies were observed in the Bank Marketing datasets
(approximately 0.88), while the German Credit dataset presented the lowest, yet stable, accuracy
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(approximately 0.75). Crucially, the mean accuracy across all datasets dropped by less than 1.5% for the
best-performing fairness models compared to the unmitigated Baselines. This suggests that the cost of

fairness, while measurable, is not prohibitive in these financial domains.
Accuracy Comparison
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Figure 1: Accuracy comparison

Caption: Comparison of model accuracy across datasets for various bias mitigation techniques. This bar
chart illustrates the classification accuracy achieved by the two baseline models (Logistic Regression (LR)
and Random Forest (RF)) and six bias-mitigated models across the five tested datasets. The performance
is consistently high across all models, suggesting that the mitigation techniques primarily focus on fairness
without causing catastrophic predictive performance degradation.

The central challenge in responsible Al development is managing the fairness—performance trade-off. This
relationship is visualized in Figure 2 (AUC vs. DP_diff) and Figure 3 (AUC vs. EO_difY).

) Demographic Parity (DP) Trade-off (Figure 2): Baseline models, particularly Baseline LR,
show high initial DP_diff values (up to approximately 0.21), indicating significant disparity in the overall
approval rate between groups. Mitigation techniques successfully push the results towards the lower half
of the plot (lower DP_diff). The Threshold Optimizer (DP) and AIF360 Reweighing emerged as highly
effective strategies for achieving DP, consistently positioning models near the optimal y=0 line with
minimal AUC drop.

° Equal Opportunity (EO) Trade-off (Figure 3): For credit and lending models, Equal
Opportunity (EO) is often the more relevant metric, as it focuses on eliminating disparate treatment for
applicants who should have been approved (True Positives). The Fairlearn Exponentiated Gradient (EO)
and Threshold Optimizer (EO) successfully drive the EO_diff toward zero, demonstrating that in-
processing and post-processing methods tailored to a specific metric can be highly effective.
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Figure 2: Fairness—Performance Tradeoff (AUC vs DP_diff)

Caption: AUC vs. Demographic Parity Difference (DP_diff) Tradeoff. This scatter plot visualizes the
crucial trade-off between predictive performance (AUC) and the degree of Demographic Parity (DP_diff).
Points closer to the bottom-right corner represent a superior fairness-performance balance.
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Figure 3: Fairness—Performance Tradeoff (AUC vs EO_difY)

Caption: AUC vs. Equal Opportunity Difference (EO_diff) Tradeoff. This scatter plot shows the trade-
off between AUC and the Equal Opportunity Difference, which measures the difference in True Positive
Rates (TPR) between the protected groups. Points near zero indicate the best balance, showing maximum
predictive power for minimal disparity in True Positive Rate.

4.2 Detailed Comparison of Fairness Metrics Across Datasets

Disparate Impact (DI)

Figure 4 (Disparate Impact Metric Comparison) presents the DI ratio. For instance, the Baseline RF model
on the Bank-Marital dataset shows a DI of approximately 2.6. This extreme value indicates that the
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privileged group is receiving positive outcomes at 2.6 times the rate of the unprivileged group. The
Fairlearn Exponentiated Gradient (DP) and AIF360 Reweighing successfully push the DI metric towards

the ideal value of 1.0 across most contexts, indicating a balanced ratio of positive outcomes.
Disparate_Impact Metric Comparison Across Datasets
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Figure 4: Disparate Impact Metric Comparison Across Datasets

Caption: Comparison of Disparate Impact (DI) Metric Values Across Datasets. The DI ratio compares
the rate of favorable outcomes for the unprivileged group to the privileged group. A DI value close to 1
indicates perfect fairness. The figure highlights initial severe bias in the Bank-Marital and Bank-Age
datasets.

Demographic Parity Difference (DP_diff)

As seen in Figure 5 (DP_diff Metric Comparison), the DP_diff metric shows that pre-processing (AIF360
Reweighing) and post-processing (Threshold Optimizer (DP)) methods are exceptionally strong at
reducing the overall disparity in positive classifications. Reweighing, in particular, achieves DP_diff
values close to zero for the German, Bank-Marital, and Bank-Age datasets.

DP_diff Metric Comparison Across Datasets
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Figure 5: DP_diff Metric Comparison Across Datasets
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Caption: Comparison of Demographic Parity Difference (DP_diff) Across Datasets. Lower values near
zero indicate better compliance with Demographic Parity. Baseline models show high initial bias,
especially in the Synthetic and German datasets.

Equal Opportunity Difference (EO_diff)

Figure 6 EO _diff Metric Comparison shows the EO diff metric across datasets. The Fairlearn
Exponentiated Gradient (EO) method, which optimizes directly for this constraint, achieves near-zero
EO_diff on the Synthetic, German, and Credit Default datasets. This confirms the value of using metric-
specific in-processing constraints when equalizing opportunities for deserving individuals is the primary
ethical goal. Furthermore, the True Positive Rate (TPR) comparison in Figure 7 reveals that methods like
Fairlearn Exponentiated Gradient (EO) successfully bring these TPR rates into close alignment.
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Figure 6: EO_diff Metric Comparison Across Datasets

Caption: Comparison of Equal Opportunity Difference (EO_diff) Across Datasets. Values near zero are
desirable. The plot reveals strong initial EO bias in the Synthetic and Credit Default datasets. Fairlearn
Exponentiated Gradient (EO) successfully targets and often achieves near-zero EO_diff.
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Figure 7: True Positive Rate Parity
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Caption: True Positive Rate (TPR) Parity Comparison Across Mitigation Techniques. This bar chart
displays the True Positive Rate (TPR) for both the unprivileged (Group 0) and privileged (Group 1)
groups. Equalized Odds is satisfied when the TPRs of both groups are approximately equal. Fairlearn
Exponentiated Gradient (EO) and AIF360 EQ Odds Postprocess visually achieve the closest alignment.

4.3 Method Synthesis and Discussion
The overall comparative performance is synthesized in the heatmap in Figure 8, which normalizes all
metrics to show the composite quality of each model across all datasets.

Method Class Primary Benefit Top Performers

Pre-processing Highly effective at reducing DP and DI AIF360 Reweighing
by correcting historical class imbalance
in the training data (e.g., German Credit).

In-processing Best for achieving specific, targeted Fairlearn Exponentiated
fairness metrics (e.g., EO). Offers a Gradient (EO)
strong theoretical guarantee of constraint
satisfaction during training.

Post-processing Excellent for deployment flexibility and Threshold Optimizer
tuning the fairness—performance balance (DP/EO), AIF360 EQ Odds
without retraining the core model. Strong Postprocess

in achieving both DP and EO.

Overall Fairness-Performance Summary Heatmap

0.8
AIF360 EQ Odds Postprocess MUVFEERVEE-0.0044 0.019
0.7
AIF360 Reweighing BoRAS] . 0.0031 0.042
0.6
Baseline (LR) [OA:] . 0.03 0.066
0.5
» Baseline (RF) JOE:H] . 0.008 0.03
§ -0.4
= Fairlearn ExponentiatedGradient (DP) BRORsES -0.012 0.024
-0.3
Fairlearn ExponentiatedGradient (EQ) . 0.8 0.06 0.059
-0.2
ThresholdOptimizer (DP) (U0 00031 0.022
-0.1
ThresholdOptimizer (EQ) 0.023 0.041
-0.0

AUC accuracyEO _diff DP_diff

Figure 8: Overall Fairness—Performance Summary Heatmap

Caption: Overall summary of normalized performance and fairness metrics. A heatmap summarizing the
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aggregate performance of each mitigation method across all datasets. The green color scale indicates
desirable outcomes (higher AUC/Accuracy, lower DP_diff/EO_difY).

Discussion and Practical Implications:

The findings reinforce the need for a holistic and contextual approach to fairness in financial modeling.
The choice of fairness metric must align with the regulatory and ethical requirements: high-stakes credit
approval requires strict EO parity, while marketing models might prioritize DP. The AIF360 Reweighing
pre-processor generally achieved the best overall balance, while post-processing methods like the
Threshold Optimizer offer powerful deployment flexibility, allowing a single model to be adjusted
dynamically to satisfy different fairness regulations without costly retraining.

5. Conclusion

This study conducted a cross-domain evaluation of bias mitigation methods on financial datasets,
demonstrating that fairness interventions can significantly reduce demographic disparities while
maintaining high model performance. Among the tested methods, AIF360 Reweighing and Fairlearn
Threshold Optimizer consistently achieved the most balanced outcomes across the various fairness
metrics. Furthermore, the results highlight a crucial finding: the optimal technique depends on the nature
of the bias. Pre-processing techniques excel at reducing population-level disparities (DP and DI), while
in-processing techniques are superior for ensuring equal opportunity in the rate of approvals (EO) among
qualified candidates. This work provides clear empirical guidance for the responsible deployment of Al
in regulated financial services.

5.1 Limitations and Future Work

The current study has several limitations. The datasets used were static; temporal drift effects were not
analyzed. Furthermore, fairness was assessed on binary protected attributes only. Future studies should
explore:

) Multi-class and intersectional fairness constraints (e.g., considering both age and gender
simultaneously).

) Temporal bias drift analysis to understand how fairness decays over time in deployment.

° Integrating explainability frameworks (e.g., SHAP, XEMP) to contextualize fairness outcomes and
provide regulatory-compliant justifications.
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Appendix: Detailed Model Performance and Fairness Metrics

Tablel: Model performance and fairness metrics for all models and datasets
group 0 group 1 group O group 1 Disparat

Dataset Model accuracy AUC ~ TPR _TPR _PPR  PPR DP diff EO_diff e Impact

Synthetic  Baseline (LR) 0.6544 0.7142 0.7031 0.5867 0.6088 0.4040 0.2048 0.1164 1.5068

Synthetic  Baseline (RF) 0.6167 0.6763 0.6884 0.5933 0.6109 0.4656 0.1452 0.0951 1.3119

Fairlearn
ExponentiatedGra

Synthetic  dient (DP) 0.5856 0.6213 0.6264 0.6367 0.5565 0.5344 0.0221 -0.0102 1.0414

Fairlearn
ExponentiatedGra

Synthetic  dient (EO) 0.6439 0.6400 0.7096 0.6533 0.6151 0.4763 0.1388 0.0563 1.2913

ThresholdOptimiz

Synthetic  er (DP) 0.6239 NaN 0.7471 0.8033 0.6590 0.6303 0.0287 -0.0562 1.0455

ThresholdOptimiz

Synthetic  er (EO) 0.6428 NaN 0.6835 0.6500 0.5795 0.4787 0.1008 0.0335 1.2106

AIF360

Synthetic  Reweighing 0.6517 0.6974 0.6721 0.6433 0.5669 0.4526 0.1143 0.0288 1.2526

AIF360 EQ Odds

Synthetic  Postprocess 0.5528 0.7446 0.5106 0.5000 0.4718 0.4348 0.0369 0.0106 1.0849

German Baseline (LR) 0.7600 0.7897 0.9048 0.8413 0.8137 0.7083 0.1054 0.0635 1.1488

German Baseline (RF) 0.7467 0.7701 0.9048 0.9524 0.8382 0.8438 -0.0055 -0.0476 0.9935

Fairlearn
ExponentiatedGra

German dient (DP) 0.7633 0.6926 0.9048 0.8413 0.8088 0.7083 0.1005 0.0635 1.1419
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Fairlearn
ExponentiatedGra

German dient (EO) 0.7633 0.6979 0.9048 0.8413 0.8088 0.7083 0.1005 0.0635 1.1419
ThresholdOptimiz

German er (DP) 0.7667 NaN 0.8844 0.8413 0.7696 0.7188 0.0509 0.0431 1.0708
ThresholdOptimiz

German er (EO) 0.7700 NaN 0.8844 0.8254 0.7696 0.6875 0.0821 0.0590 1.1194
AIF360

German Reweighing 0.7633 0.7932 0.9048 0.8413 0.8088 0.7083 0.1005 0.0635 1.1419
AIF360 EQ Odds

German Postprocess 0.7633 0.7921 09116 0.8730 0.8137 0.7604 0.0533 0.0385 1.0701

Bank-

Marital Baseline (LR) 0.8912 0.8714 0.2188 0.2057 0.0440 0.0330 0.0109 0.0131 1.3314

Bank-

Marital Baseline (RF) 0.9047 0.9251 0.4122 0.4057 0.0757 0.0660 0.0097 0.0065 1.1470
Fairlearn

Bank- ExponentiatedGra

Marital dient (DP) 0.8917 NaN 0.2132 0.2800 0.0427 0.0444 -0.0017 -0.0668 0.9609
Fairlearn

Bank- ExponentiatedGra

Marital dient (EO) 0.8888 0.6147 0.2245 0.1086 0.0471 0.0178 0.0293 0.1159 2.6509

Bank- ThresholdOptimiz

Marital er (DP) 0.8894 NaN 0.2868 0.3200 0.0628 0.0521 0.0107 -0.0332 1.2064

Bank- ThresholdOptimiz

Marital er (EO) 0.8889 NaN 0.2868 0.3029 0.0628 0.0527 0.0101 -0.0160 1.1918

Bank- AIF360

Marital Reweighing 0.8917 0.8714 0.2153 0.2743 0.0435 0.0413 0.0022 -0.0590 1.0530

Bank- AIF360 EQ Odds

Marital Postprocess 0.8911 0.8714 0.2153 0.2343 0.0435 0.0375 0.0060 -0.0190 1.1601

Bank-Age Baseline (LR) 0.8912 0.8714 0.1887 0.2490 0.0375 0.0482 -0.0107 -0.0603 0.7774

Bank-Age Baseline (RF) 0.9047 0.9251 0.3918 0.4331 0.0725 0.0768 -0.0043 -0.0413 0.9434

Fairlearn
ExponentiatedGra
Bank-Age dient (DP) 0.8913 NaN 0.1887 0.2503 0.0375 0.0483 -0.0109 -0.0616 0.7750

Fairlearn
ExponentiatedGra
Bank-Age dient (EO) 0.8897 0.6181 0.2296 0.1748 0.0481 0.0333 0.0147 0.0547 1.4423

ThresholdOptimiz
Bank-Age er (DP) 0.8893 NaN 0.2704 0.3311 0.0601 0.0674 -0.0073 -0.0607 0.8918

ThresholdOptimiz
Bank-Age er (EO) 0.8890 NaN 0.2500 0.2993 0.0557 0.0603 -0.0046 -0.0493 0.9234

AIF360
Bank-Age Reweighing 0.8916 0.8721 0.1983 0.2530 0.0392 0.0488 -0.0096 -0.0547 0.8030

AIF360 EQ Odds
Bank-Age Postprocess 0.8899  0.8722 0.1863 0.2411 0.0390 0.0467 -0.0076 -0.0548 0.8365

Credit
default Baseline (LR) 0.8084 0.7152 0.2447 0.2296 0.0873 0.0666 0.0207 0.0151 '1.3110

Credit Baseline (RF) 0.8147 0.7641 0.3459 0.3734 0.1283 0.1214 0.0069 0.0275 1.0566
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default
Fairlearn
Credit ExponentiatedGra
default dient (DP) 0.8094 0.6189 0.2294 0.2463 0.0797 0.0721 0.0076 0.0169 1.1055
Fairlearn
Credit ExponentiatedGra
default dient (EO) 0.8093 0.6187 0.2353 0.2428 0.0817 0.0714 0.0103 0.0075 1.1445
Credit ThresholdOptimiz
default er (DP) 0.8122 NaN 0.2824 0.3909 0.1027 0.1297 0.0269 0.1085 0.7922
Credit ThresholdOptimiz
default er (EO) 0.8109 NaN 0.3247 0.4110 0.1235 0.1400 0.0165 0.0863 0.8823
Credit AIF360
default Reweighing 0.8088 0.7117 0.2165 0.2533 0.0744 0.0756 0.0012 0.0368 0.9839
Credit AIF360 EQ Odds
default Postprocess 0.8028 0.5924 0.2165 0.2138 0.0744 0.0690 0.0054 0.0026 1.0783

The Area Under the Curve (AUC) metric is not applicable (N/A) or reported as NaN for the Threshold
Optimizer models because Threshold Optimization is a post-processing technique that calibrates the final
decision boundary of a pre-trained model (either LR or RF) without altering the underlying classification
scores.
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