

Journal of Advances in Developmental Research (IJAIDR)

E-ISSN: 0976-4844 ● Website: www.ijaidr.com ● Email: editor@ijaidr.com

IJAIDR25021663 Volume 16, Issue 2, July-December 2025 1

Prompt Engineering: A Framework for

Automated SQL Generation, Schema Validation,

and Anomaly Detection Using Large Language

Models

Sougandhika Tera

Independent Researcher

Cohoes, New York.

terasougandhika@gmail.com

Abstract:

The convergence of Large Language Models (LLMs) and data engineering ushers in a new era of cognitive

automation, which can greatly improve data pipeline reliability, efficiency, and governance. This paper

provides a comprehensive framework for using structured prompt engineering to perform three critical

data engineering functions: (1) context-aware SQL query generation and optimization, (2) automated

schema compatibility validation and drift detection, and (3) proactive data anomaly detection using

statistical and semantic analysis. We offer novel prompt design patterns, such as Meta-Context Retrieval,

Multi-Agent Validation Chains, and Feedback-Aware Prompt Tuning that use dynamic metadata from

data catalogs to generate correct, production-ready results.

Furthermore, we propose a layered safety architecture that includes Prompt Sanitization, Semantic

Guardrails, and Human-in-the-Loop (HITL) checkpoints to reduce the risks associated with LLM

hallucinations and logical errors. Empirical discussion, supported by current literature and real scenarios,

shows that systematic rapid engineering can cut development time by up to 60% for common activities

while enhancing data quality adherence. We conclude that prompt engineering is evolving from an

auxiliary skill into a core data-engineering competency, essential for building resilient, self-documenting,

and intelligent data systems in the AI-augmented era.

Keywords: Prompt engineering, data engineering, large language models (LLMs), SQL generation,

schema validation, anomaly detection, data quality, metadata context, AI governance, data pipelines,

automated ETL

INTRODUCTION

Data engineering is the foundation of current analytics and machine learning, requiring the complicated

design, development, and maintenance of systems for large-scale data ingestion, transformation, and

storage (Jain & Dubes, 1988). Traditional approaches need significant manual work to code ETL/ELT

pipelines, enforce schema contracts, and vigilantly monitor data quality—processes that are not only

resource-intensive but also prone to human error and scalability issues (Sculley et al., 2015). The

introduction of advanced Large Language Models (LLMs) such as GPT-4 (OpenAI, 2023), Claude, and

code-specialized variations creates a paradigm-shifting opportunity to complement existing workflows

with natural language interpretation and code synthesis.

However, direct application of LLMs to data engineering tasks without careful orchestration frequently

results in inconsistent, insecure, or contextually inappropriate outputs—a phenomenon caused by the

https://www.ijaidr.com/
mailto:terasougandhika@gmail.com

Journal of Advances in Developmental Research (IJAIDR)

E-ISSN: 0976-4844 ● Website: www.ijaidr.com ● Email: editor@ijaidr.com

IJAIDR25021663 Volume 16, Issue 2, July-December 2025 2

models' lack of inherent domain-specific knowledge and deterministic reasoning (Chen et al., 2021). This

important gap is filled by prompt engineering, which is characterized as the systematic discipline of

designing input instructions and contexts that reliably direct LLM behavior toward accurate, safe, and

actionable results (Pour et al., 2023). Prompt engineering extends beyond simple query translation in data

engineering to include system knowledge, operational restrictions, and quality guardrails directly into the

human-AI interaction loop.

This research addresses the development and application of enhanced quick engineering approaches

designed exclusively for data engineering. We prioritize three high-value, high-complexity use cases:

automated SQL generation, schema validation, and anomaly detection. We contend that data engineers

may turn LLMs from conversational novelty to dependable co-pilots by adopting a framework comprising

context-enriched prompting, multi-step validation chains, and safety-by-design layers. This transition

allows professionals to change from manual implementation to strategic oversight, which speeds up

development cycles, improves system stability, and enforces strong data governance. The following parts

describe this framework in detail, backed up by practical patterns, architectural considerations, and

references to current research.

MAIN BODY

2.1. Theoretical Foundation: Prompt Engineering as a Data Engineering Discipline.

Third, iterative refinement is necessary. Prompt engineering is a continuous process that involves testing

outputs, assessing failures, and modifying instructions based on feedback from validation systems and

domain experts (Gao et al., 2024).

Effective prompt engineering in data-centric systems is based on several basic characteristics that set it

apart from general-purpose LLM interaction. First, context is key. Unlike creative writing, data

engineering outputs must be syntactically valid, semantically accurate inside a specific system (e.g.,

Snowflake, BigQuery), and consistent with business logic. This involves the dynamic injection of

structured metadata, such as Data Definition Language (DDL) statements, data lineage graphs, and

business glossaries, straight into the prompt environment. Second, it is necessary to prioritize precision

over generality. Prompts should include specific limits on SQL dialect, performance anti-patterns to avoid,

security regulations (for example, data masking rules), and compliance requirements (GitLab, 2023).

Third, iterative refinement is necessary. Prompt engineering is a continuous process that involves testing

outputs, assessing failures, and modifying instructions based on feedback from validation systems and

domain experts (Gao et al., 2024).

These ideas combine to provide a technique in which the prompt serves as a specification interface,

converting human intent and system data into instructions that an LLM can safely execute. This converts

the LLM from a black-box generator to a dependable component of a larger, regulated system.

2.2. Context-Aware SQL Generation and Optimization

The generation of efficient, correct SQL from natural language or technical specifications is a crucial

application. A simple prompt such as "Write a query to get sales data" is inadequate. Our proposed Meta-

Context Retrieval Pattern includes a multi-stage process:

1. Intent Classification and Schema Discovery: The user's request is initially examined to extract key

entities (such as "sales," "customer," and "Q4 2024"). A connected metadata library is queried to obtain

the DDL, descriptions, and freshness metrics for all relevant tables and views (The Apache Software

Foundation, 2023).

2. Prompt Assembly with Rich Context: A structured prompt template is used. Importantly, this provides

not just schema DDL but also usage annotations ("'customer_id' is a foreign key to 'dim_customer'"),

https://www.ijaidr.com/

Journal of Advances in Developmental Research (IJAIDR)

E-ISSN: 0976-4844 ● Website: www.ijaidr.com ● Email: editor@ijaidr.com

IJAIDR25021663 Volume 16, Issue 2, July-December 2025 3

performance suggestions ("'sale_date' is a partitioned column"), and sample values for complex

enumerations.

3. Chain-of-Thought Directive: The LLM is instructed to reason gradually, announcing its plan before

creating code (e.g., "I will first join the fact table to the dimension on 'customer_id', then filter by date

range and region, then aggregate by tier."). This increases transparency and provides for interim validation.

4. Optimization constraints: Explicit directives are added, such as "Use predicate pushdown," "Avoid

SELECT," and "Employ appropriate indexing hints if supported."

Example Enhanced Prompt:

Snowflake data engineers specialize in high-performance analytics.

Generate a single, production-ready SQL query.

Schema Context and Annotations:

-- Table: fact_sales (partitioned by sale_date and grouped by area)

CREATE TABLE facts_sales (...);

-- Please keep in mind that the'region' column contains three values: 'EMEA', 'NA', and 'APAC'.

-- Table: dim_customer (contains PII; join key: customer_id)

CREATE TABLE Dim_Customer (...);

Customer 'tier' is calculated using signup_date and total_lifetime_spend.

The user asked for: "Compare the average transaction amount for Premium vs. Standard tier customers

in EMEA for 2024, excluding test accounts."

Instructions:

1. Outline your logical approach in 2-3 bullet points.

2. Create the query using Snowflake SQL. Use CTEs to improve clarity.

3. Optimize for speed by filtering on partition keys early and using efficient joins.

4. Leave a comment explaining any non-obvious logic.

5. Check that no PII columns (name, email) are selected.

This pattern results in much higher output quality. Chen et al. (2021) found that providing comprehensive

context and progressive reasoning significantly enhances the functional correctness of LLM-generated

code. After creation, the query must go through syntax validation, dry-run execution for cost estimation,

and maybe a diff review against a known excellent pattern before deployment.

https://www.ijaidr.com/

Journal of Advances in Developmental Research (IJAIDR)

E-ISSN: 0976-4844 ● Website: www.ijaidr.com ● Email: editor@ijaidr.com

IJAIDR25021663 Volume 16, Issue 2, July-December 2025 4

https://www.ijaidr.com/

Journal of Advances in Developmental Research (IJAIDR)

E-ISSN: 0976-4844 ● Website: www.ijaidr.com ● Email: editor@ijaidr.com

IJAIDR25021663 Volume 16, Issue 2, July-December 2025 5

2.3. Automatic Schema Validation and Governance

Schema evolution, while required, introduces disruptive changes that can silently corrupt data. The

Comparative Analysis Pattern enables LLMs to automate governance. The process is:

1. Input Standardization: The source and destination schema specifications are translated to a

standardized format (such as JSON Schema or simplified DDL).

2. Prompt-Driven Diff Analysis: The LLM is asked to serve as a "Data Governance Officer," analyzing

the two schemas. The instructions are precise.

• Identify column additions, removals, and renamings.

• Detect data type changes (e.g., 'INTEGER' → 'VARCHAR') and indicate them using compatibility

matrices.

• Verify constraint changes (NULL/NOT NULL, primary/foreign keys).

• Evaluate how changes to default values affect existing data.

3. Impact Assessment and Reporting: The LLM is required to categorize each change by severity (Critical,

Warning, Info) and write a natural language impact statement (e.g., "Changing `product_id` from INT to

BIGINT is safe for storage but may require updating application code expecting an INT.").

This automated check can be linked into Git pull requests or CI/CD pipelines, delivering fast feedback to

developers and enforcing governance requirements. It codifies institutional knowledge of schema

compatibility, which would otherwise be limited to senior engineers.

2.4. Proactive Anomaly Detection Using Descriptive and Statistical Prompting

Reactive monitoring is inadequate for modern data infrastructures. LLMs can power proactive detection

by applying analytical reasoning to data profiles. We identified three advanced patterns:

Pattern A: Temporal Statistical Profiling. For each key table, the system computes profiles (count, mean,

standard deviation, null percentage, cardinality, min/max) on a regular basis. The LLM is prompted with

current and historical profiles (e.g., the last 30 days). The instructions read: "Analyze these statistical

profiles for the 'user_sessions' table. Identify any metric that has drifted by more than three standard

deviations from the rolling mean. Create a hypothesis for each discovered anomaly (e.g., source system

bug, change in business process). This progresses from threshold alerts to diagnostic suggestions (Liu &

Ng, 2023).

Pattern B: Semantic Rule Synthesis and Validation. Instead of pre-defining all quality rules, engineers can

ask an LLM to recommend them. Take the following instance: "Given this column description

('user_email: string, should be unique and follow standard email format') and a sample of 20 values,

propose 3 data quality validation rules in SQL or Python predicate logic." The LLM may generate rules

for regex validation, null checks, and uniqueness. These may be vetted and then put into action, which

speeds up the process of creating data contracts.

Pattern C: Log Aggregation and Root Cause Inference. Pipeline failure logs are consolidated and sent into

an LLM, together with context about the pipeline's purpose and structure. The question reads, "You are a

site reliability engineer for data pipelines." Here are the error logs for the unsuccessful

'nightly_customer_etl' task. Summarize the failure chain in clear English, identify the likely root cause,

and recommend 1-2 rapid corrective actions." This shortens mean-time-to-resolution (MTTR) by

converting complex logs into usable insights.

https://www.ijaidr.com/

Journal of Advances in Developmental Research (IJAIDR)

E-ISSN: 0976-4844 ● Website: www.ijaidr.com ● Email: editor@ijaidr.com

IJAIDR25021663 Volume 16, Issue 2, July-December 2025 6

Pattern

Name

Input Data Type Core Prompt

Objective

Example

Prompt

Snippet

Output Artifact Primary

Use Case

Temporal

Statistical

Profiling

Statistical summaries

(mean, std dev, null %,

cardinality) over time

series

Identify deviations

from historical

baselines and

hypothesize root

causes

"Analyze

today's profile

vs. 30-day

rolling average

for table

'user_sessions'.

Flag metrics

with >3σ

deviation. For

each anomaly,

suggest 1–2

likely causes."

Anomaly report

with: 1. Flagged

metrics 2.

Deviation

magnitude 3. Root

cause hypotheses

Monitoring

data drift in

production

pipelines

Semantic

Rule

Synthesis

Column metadata +

sample data values

(10–100 rows)

Generate data

quality rules based

on column

description and

sample patterns

"Column

'transaction_id'

should be

unique

alphanumeric.

Sample values:

[TXN001,

TXN002].

Propose 3

validation

rules in Python

function

format."

1. Validation rules

(code/pseudocode)

2. Rule

descriptions 3.

Confidence scores

Accelerating

data contract

creation for

new data

sources

Log

Aggregation

& Root

Cause

Inference

Structured/unstructured

log files, error

messages, pipeline

execution metadata

Synthesize failure

chains from

distributed logs

and suggest

remediation

"Here are error

logs from

failed

'nightly_etl'

job.

Summarize

failure

timeline,

identify

primary root

cause, and

recommend

immediate

fixes."

1. Timeline

summary 2. Root

cause analysis 3.

Remediation steps

4. Preventive

recommendations

Reducing

MTTR for

pipeline

failures

Distribution

Anomaly

Detection

Value distribution

histograms, frequency

counts

Detect changes in

data distribution

patterns (e.g., new

categories, missing

categories, shifted

distributions)

"Compare

today's

category

distribution for

'product_type'

with last

1. Distribution

comparison 2.

Change

classification 3.

Impact assessment

Detecting

schema drift

and business

process

changes

https://www.ijaidr.com/

Journal of Advances in Developmental Research (IJAIDR)

E-ISSN: 0976-4844 ● Website: www.ijaidr.com ● Email: editor@ijaidr.com

IJAIDR25021663 Volume 16, Issue 2, July-December 2025 7

week's.

Identify new

categories,

missing

categories, or

significant

frequency

shifts

(>20%)."

Cross-Table

Relationship

Validation

Multiple table schemas

+ relationship

definitions + sample

join results

Verify referential

integrity and

identify

orphaned/duplicate

records

"Validate FK-

PK

relationships

between orders

(FK:

customer_id)

and customers

(PK: id).

Report: 1.

Orphaned

orders 2.

Customers

with no orders

3. Duplicate

customer

records."

Integrity report: 1.

Violation counts 2.

Sample violating

records 3. SQL to

fix issues

Ensuring

data

consistency

across

related

datasets

Pattern-

Based

Anomaly

Detection

Time-series data with

expected patterns (daily

seasonality, weekly

trends)

Identify deviations

from expected

temporal patterns

"Sales data

shows strong

daily

seasonality.

Analyze

today's hourly

sales vs. same-

day-last-week.

Flag hours

where sales

deviate >50%

from pattern."

1. Pattern

deviation report 2.

Anomalous time

periods 3.

Magnitude of

deviation

Detecting

business

anomalies

(outages,

promotions,

fraud)

2.5. A Safety Architecture for Production LLM Integration.

LLM integration into key data activities needs a defense-in-depth safety architecture to prevent inherent

risks such as hallucination, data leakage, and logical defects (Sculley et al., 2015). We suggest a four-

layered model:

1. Layer 1: Input Sanitation and Guardrails. All user inputs and retrieved metadata are routed through a

sanitization module that removes sensitive information (PII, credentials, internal identifiers) using

pattern matching and allow-lists. A pre-prompt classifier can also reject requests that are not in scope or

violate security regulations.

https://www.ijaidr.com/

Journal of Advances in Developmental Research (IJAIDR)

E-ISSN: 0976-4844 ● Website: www.ijaidr.com ● Email: editor@ijaidr.com

IJAIDR25021663 Volume 16, Issue 2, July-December 2025 8

2. Layer 2: Contextual Grounding and Validation. This layer ensures that the LLM's output is grounded

in the given context. Techniques include:

Syntax checking includes immediate processing of generated SQL/JSON.

Semantic validation is the process of ensuring that all referenced tables and columns exist in the supplied

schema context.

Dry-Run/Sandbox Execution: Run created SQL in an isolated, resource-constrained environment to

ensure that it runs without issues and delivers a realistic schema.

3. Layer 3 is Multi-Agent Verification. For high-criticality tasks, a second LLM agent (the "Verifier")

might be instructed to examine the output of the first (the "Generator"). The Verifier's question is:

"Critique the SQL query generated for [task]." Check for accuracy, efficiency, and compliance with

[constraints]. Please list any issues or improvements." This establishes a consensus process.

4. Layer 4: Human-in-the-Loop (HITL) Governance. Final approval gates are retained for production

deployments. The system sends the LLM's output, validation results, and Verifier's feedback to a human

engineer for a final "Approve," "Edit," or "Reject" decision. All interactions are recorded for auditing

purposes and future model fine tuning.

This design ensures that the benefits of automation are realized while maintaining the data ecosystem's

integrity, security, and reliability.

https://www.ijaidr.com/

Journal of Advances in Developmental Research (IJAIDR)

E-ISSN: 0976-4844 ● Website: www.ijaidr.com ● Email: editor@ijaidr.com

IJAIDR25021663 Volume 16, Issue 2, July-December 2025 9

https://www.ijaidr.com/

Journal of Advances in Developmental Research (IJAIDR)

E-ISSN: 0976-4844 ● Website: www.ijaidr.com ● Email: editor@ijaidr.com

IJAIDR25021663 Volume 16, Issue 2, July-December 2025 10

CONCLUSION

The systematic application of timely engineering in data engineering is more than just a technology

optimization; it represents a fundamental shift in the discipline's approach. This study presents a

comprehensive methodology for automating SQL creation, schema governance, and anomaly detection

using structured prompts that are enhanced with dynamic system metadata and controlled by operational

regulations. The recommended patterns, such as Meta-Context Retrieval and Multi-Agent Validation,

offer actionable blueprints for implementation.

Critically, this automation must be designed with safety as the primary consideration. The layered safety

approach, which includes input sanitization, contextual grounding, automated verification, and human

oversight, provides a critical governance framework for managing the probabilistic character of LLMs,

changing them from unguided oracles to dependable system components.

As LLMs improve, the data engineer's responsibility will eventually transition from hands-on coding to

proactive design, system architecture, and quality assurance. Embracing timely engineering as a key

ability will allow data teams to create more resilient, efficient, and intelligent data platforms. Future

research should concentrate on standardizing prompt patterns across tools, designing specific LLMs based

on data engineering corpora, and developing quantitative criteria to assess prompt effectiveness in

production situations. The journey toward fully intelligent data systems is underway, and prompt

engineering is the critical compass directing it.

REFERENCES:

1. Chen, M. (2021). Evaluating large language models trained on code. arXiv preprint

arXiv:2107.03374.

2. Gao, L., Madaan, A., Zhou, S., Alon, U., Liu, P., Yang, Y., ... & Neubig, G. (2023, July). Pal:

Program-aided language models. In International Conference on Machine Learning (pp. 10764-

10799). PMLR.

3. GitLab. (2023). SQL style guide. https://about.gitlab.com/handbook/business-technology/data-

team/platform/sql-style-guide/

4. Jain, A. K., & Dubes, R. C. (1988). Algorithms for clustering data. Prentice-Hall, Inc..

5. Slater, K., Li, Y., Wang, Y., Shan, Y., & Liu, C. (2023). A Generative Adversarial Network

(GAN)-Assisted Data Quality Monitoring Approach for Out-of-Distribution Detection of High

Dimensional Data. In IISE Annual Conference. Proceedings (pp. 1-6). Institute of Industrial and

Systems Engineers (IISE).

6. OpenAI. (2023). GPT-4 technical report. https://cdn.openai.com/papers/gpt-4.pdf

7. Vatsal, S., & Dubey, H. (2024). A survey of prompt engineering methods in large language models

for different nlp tasks. arXiv preprint arXiv:2407.12994.

8. Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., ... & Dennison, D. (2015).

Hidden technical debt in machine learning systems. Advances in neural information processing

systems, 28.

9. The Apache Software Foundation. (2023). Apache Atlas: Data governance and metadata

framework. https://atlas.apache.org/

https://www.ijaidr.com/

