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Abstract:

Machine learning models in credit risk are frequently compromised by the class imbalance problem, where
fraud cases or defaults represent a negligible fraction of the population. While the Synthetic Minority
Over-sampling Technique (SMOTE) is the de facto standard for addressing this, recent literature suggests
it may introduce noise and computational overhead without operational gain. This study conducts a
rigorous comparative analysis of six strategies: Cost-Sensitive Learning (Baseline), Random
Undersampling (RUS), Vanilla SMOTE, Borderline-SMOTE, ADASYN, and SMOTE-ENN applied to
Gradient Boosted Decision Trees (XGBoost). The evaluation utilizes three datasets with varying
imbalance ratios (from 0.17% to 6.9%) to test robustness across different financial contexts. Our
experiments reveal two critical insights. First, we identify a "False Positive Trap" in extreme imbalance
scenarios: while Vanilla SMOTE achieved the highest Area Under Precision-Recall Curve (AUPRC:
0.825), it degraded the Fl-score to 0.282, rendering it operationally inviable. In contrast, Borderline-
SMOTE maintained a comparable AUPRC (0.818) while achieving a superior F1-score (0.690). Second,
we detect a "Threshold of Necessity": in scenarios with moderate imbalance (>5%), all sampling
techniques failed to outperform the cost-sensitive baseline, suggesting that synthetic sampling is counter-
productive when sufficient minority examples exist.
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I. INTRODUCTION

The rapid digitization of financial services has necessitated the development of automated, high-velocity
credit risk assessment models. Whether for real-time fraud detection or credit underwriting, these models
must distinguish between the majority class (legitimate transactions/accounts) and the minority class
(fraud/defaulters). However, real-world financial data is inherently imbalanced. In fraud detection, the
positive class often constitutes less than 0.1% of the dataset [1].

Traditional classifiers, such as Logistic Regression and Support Vector Machines, aim to maximize overall
accuracy, leading to a bias toward the majority class. In an extreme imbalance scenario, a trivial model
predicting "legitimate" for every transaction achieves 99.9% accuracy but fails its primary objective: risk
mitigation. To counter this, practitioners employ resampling techniques, most notably the Synthetic
Minority Over-sampling Technique (SMOTE) [2].

While SMOTE is widely adopted, its "blind" generation of synthetic samples along the line segments
joining k-nearest neighbors can introduce noise, particularly in high-dimensional financial data where
class overlap is significant. Advanced variations such as Borderline-SMOTE [3] and ADASYN [4]
attempt to resolve this by focusing on hard-to-classify examples.

Despite the proliferation of these techniques, there is a paucity of comparative studies that evaluate them
through an operational lens. Most academic benchmarks rely heavily on ROC-AUC, a metric known to
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be overly optimistic in imbalanced domains [5], effectively masking the operational cost of False
Positives. Furthermore, few studies differentiate between "Extreme Imbalance" (Fraud) and "Moderate
Imbalance" (Default), assuming a one-size-fits-all efficacy for sampling.

This paper addresses these gaps by:

1. Benchmarking six handling strategies using XGBoost, the industry standard for tabular data.
2. Comparing efficacy across differing degrees of imbalance (0.17% vs. 6.9%).
3. Evaluating performance using AUPRC and F1-score to quantify the trade-off between risk capture

and operational precision.

II. LITERATURE REVIEW

A. The Class Imbalance Problem

Class imbalance causes standard learning algorithms to underfit the minority class. Approaches to mitigate
this fall into two categories: Data-level methods (resampling) and Algorithm-level methods (cost-sensitive
learning).

B. Sampling Techniques

Random Undersampling (RUS) balances the distribution by randomly discarding majority samples.
While computationally efficient, Liu et al. [6] note that it risks eliminating informative data, potentially
degrading model generalization.

SMOTE, proposed by Chawla et al. [2], generates synthetic minority samples to prevent overfitting.
However, it treats all minority samples equally, regardless of their proximity to the decision boundary.
To address this, Han et al. [3] proposed Borderline-SMOTE, which only oversamples minority instances
near the decision boundary (the "Danger" zone), theorizing that these are the most critical for
classification. Conversely, ADASYN (Adaptive Synthetic Sampling) [4] uses a weighted distribution to
generate more samples for minority instances that are harder to learn, based on local density.

Hybrid Methods like SMOTE-ENN combine oversampling with undersampling (Edited Nearest
Neighbours) to clean the decision boundary of overlapping noise [7].

C. Gradient Boosting

XGBoost [8] has emerged as the dominant algorithm for structured financial data due to its handling of
missing values and regularization. While XGBoost includes a scale pos_weight parameter for cost-
sensitive learning, theoretical foundations suggest that reweighting examples can achieve optimal decision
boundaries without the noise introduction inherent in resampling [9]. It remains empirically unclear,
however, at what threshold of imbalance this algorithmic adjustment supersedes data-level resampling.

III. METHODOLOGY

A. Datasets

We utilize three datasets to simulate varying degrees of financial risk.

1. Kaggle Credit Card Fraud (Extreme Imbalance): Contains 284,807 transactions made by
European cardholders in 2013. Only 492 are fraud (0.172%). Features are PCA-transformed (V1-
V28) for privacy, plus Time and Amount.

2. Give Me Some Credit (Moderate Imbalance): Contains 150,000 borrowers. The target is
SeriousDlIqin2yrs (90-day delinquency). The default rate is approximately 6.9%, significantly higher
than the fraud dataset.

3. Synthetic Data: A controlled dataset generated using sklearn.make classification with 20,000
samples and 1% imbalance, used to validate theoretical boundary behavior.

B. Experimental Setup

We employ XGBoost as the base classifier. To prevent data leakage, all sampling techniques are applied
strictly within a cross-validation loop (Stratified 5-Fold). The sampling is applied only to the training fold;
validation folds remain untouched and imbalanced to reflect real-world distribution.
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C. Algorithms Evaluated
Baseline (Weighted): XGBoost with scale pos weight =

Negatives .
————— No resampling.
Positives

Random Undersampling (RUS): Randomly removes majority samples.
Vanilla SMOTE: Standard implementation (k=5).
Borderline-SMOTE: 'Borderline-1' variant.

ADASYN: Density-based adaptive sampling.

SMOTE-ENN: Sequential SMOTE followed by ENN cleaning.

Ok wh =

D. Evaluation Metrics
We prioritize AUPRC (Area Under Precision-Recall Curve) over ROC-AUC. Additionally, we report the
F1-Score, which is the harmonic mean of Precision and Recall, to measure the stability of predictions.

IV. RESULTS

The experimental results, aggregated over 5-fold cross-validation, are presented below. "Std Dev" denotes
the standard deviation across folds, indicating stability.

A. Performance on Extreme Imbalance (Credit Card Fraud - 0.17%)

Fig. 1 illustrates the Precision-Recall curves for all six methods on the Credit Card Fraud dataset. Both
Vanilla SMOTE (Green) and Borderline-SMOTE (Red) exhibit a sharp decline in precision as recall
approaches 0.85, a characteristic typical of classifiers on highly imbalanced data. While Vanilla SMOTE
maintains a marginally higher precision across the curve (reflected in its higher AUPRC of 0.825), this
global metric masks the specific operational instability revealed by the F1-score analysis.

TABLE I. PERFORMANCE ON EXTREME IMBALANCE (CREDIT CARD FRAUD - 0.17%)

Method Mean AUPRC Std Dev Mean F1-Score Training Time (s)
Vanilla SMOTE 0.825 0.033 0.282 5.59
Borderline- 0.818 0.043 0.690 4.78
SMOTE
SMOTE-ENN 0.814 0.022 0.275 360.28
Baseline (Weighted) 0.811 0.030 0.520 2.11
ADASYN 0.800 0.031 0.147 5.77
Random 0.704 0.041 0.084 0.69
UnderSampling
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Comparison of Sampling Techniques (Average 5-Fold PR Curve) - Credit card fraud
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Fig. 1. Comparison of Precision-Recall Curves on the Credit Card Fraud dataset (Extreme Imbalance).

02 0.4
Recall (Sensitivity)

T T
0.6 0.8

T
10

Vanilla SMOTE (Green) and Borderline-SMOTE (Red) show similar global performance characteristics

with a sharp precision drop-off at high recall.

B. Performance on Moderate Imbalance (Give Me Some Credit - 6.9%)
In the moderate imbalance scenario (Table II), the Cost-Sensitive Baseline achieved the highest AUPRC
(0.392), outperforming all synthetic sampling techniques. Notably, Random UnderSampling (RUS)
provided a competitive approximation (0.382) at a fraction of the computational cost (0.50s), whereas
complex methods like SMOTE-ENN yielded diminishing returns (0.334) despite significantly higher

training times.

TABLE II. PERFORMANCE ON MODERATE IMBALANCE (GIVE ME CREDIT - 6.9%)

Method Mean AUPRC Std Dev Mean F1-Score Training Time (s)
Baseline (Weighted) 0.392 0.012 0.337 1.84
Random UnderSampling 0.382 0.011 0.330 0.50
SMOTE-ENN 0.334 0.015 0.343 37.82
Vanilla SMOTE 0.309 0.012 0.360 1.70
Borderline-SMOTE 0.308 0.012 0.364 3.66
ADASYN 0.303 0.012 0.357 3.73

C. Performance on Synthetic Control (Theoretical Imbalance - 1.0%)
Experiments on the synthetic control dataset reinforced the superiority of boundary-aware methods in
clean feature spaces. Borderline-SMOTE achieved the highest AUPRC (0.202) and F1-score (0.189),
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significantly outperforming Vanilla SMOTE (AUPRC 0.107) and ADASYN (AUPRC 0.083), confirming
that density-based sampling struggles even in controlled environments with lower noise.

TABLE III. PERFORMANCE ON SYNTHETIC DATASET (IMBALANCE - 1%)

Method Mean AUPRC Std Dev Mean F1-Score Training Time (s)
Borderline-SMOTE 0.202 0.080 0.189 0911
Baseline (Weighted) 0.184 0.064 0.172 4.723

Random UnderSampling 0.111 0.018 0.064 0.520
Vanilla SMOTE 0.107 0.040 0.104 0.825
SMOTE-ENN 0.086 0.030 0.093 2.957
ADASYN 0.083 0.030 0.094 0.875

V. DISCUSSION

A. The False Positive Trap in Extreme Imbalance
A superficial analysis of Table I suggests Vanilla SMOTE is the superior method based on AUPRC
(0.825). However, a deeper inspection of the F1-Score reveals a critical operational flaw.

Why AUPRC is Misleading (Credit card fraud): F1 Score Reveals Operational Reality

Borderline SMOTE .6B0

Baseline (Weighted)

Vanilla SMOTE

Method

SMOTE-ENN

ADASYN

Random UnderSampler

—==- Baseline Performance

0.‘0 0.‘1 0.‘2 0.‘3 0.‘4 0.‘5 0.‘6 0.‘7
F1 Score (Higher is Better)
Fig. 2. The "False Positive Trap": Comparing F1 Scores reveals that Borderline-SMOTE is the only
operationally viable sampling method, outperforming the Baseline. Vanilla SMOTE and ADASYN
degrade performance despite high AUPRC scores.

As visualized in Fig. 2, there is a massive disparity between the methods. Vanilla SMOTE achieved an
F1-Score of only 0.282, while Borderline-SMOTE achieved 0.690. This discrepancy indicates that Vanilla
SMOTE effectively increases Recall (catching frauds) but at the expense of generating excessive False
Positives. In a production banking environment, this "trap" renders the model operationally expensive due
to the high volume of manual reviews required for false alarms.

Borderline-SMOTE emerged as the operational superior. By generating samples only near the decision
boundary, it maintained high AUPRC (0.818) while doubling the F1-Score (0.690) compared to Vanilla
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SMOTE. This validates the hypothesis that in extreme imbalance, the definition of the boundary is more
critical than the volume of the minority class.

B. The "Threshold of Necessity"

In the "Give Me Some Credit" dataset, where the default rate is moderate (~6.9%), we observe a reversal
in performance. As shown in Fig. 3, the Baseline (Weighted) curve consistently dominates the sampling
techniques across the entire recall range.

This supports our hypothesis of a "Threshold of Necessity." When the minority class is moderately
represented (>5%), synthetic sampling introduces noise that confuses the gradient boosting algorithm. The
model learns more effectively from the raw, weighted data than from synthetically altered distributions.
Notably, Random Undersampling (Orange line in Fig. 3) performed competitively while being the fastest
method.

Comparison of Sampling Techniques (Average 5-Fold PR Curve) - Give Me Credit

—— Baseline (Weighted) (AUPRC = 0.392)
Random Undersampling (AUPRC = 0.382)

= Vanilla SMOTE (AUPRC = 0.309)

—— Borderline SMOTE (AUPRC = 0.308)

m— ADASYN (AUPRC = 0.303)

——— SMOTE-ENN (AUPRC = 0.334)
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Fig. 3. Performance on Moderate Imbalance (6.9%). The Baseline (Blue) and Random UnderSampling
(Orange) outperform complex oversampling methods, suggesting a "Threshold of Necessity" for
synthetic data generation.

C. The Failure of ADASYN

ADASYN consistently underperformed, particularly in the Fraud dataset (Fig 2, Light Green Bar). Its
mechanism focuses on "hard-to-learn" examples, which, in financial transaction data, are often outliers or
noise. By adaptively oversampling these outliers, ADASYN likely amplified the noise in the dataset,
leading to model degradation. This aligns with findings by Garcia et al. [10], who observed that density-
based oversampling is highly sensitive to class overlap and can deteriorate classifier performance in noisy
feature spaces.

D. Computational Efficiency
SMOTE-ENN proved computationally expensive (360s vs 4.7s for Borderline-SMOTE) without yielding
performance gains. Given the need for frequent retraining in fraud detection systems, the 75x latency
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increase makes SMOTE-ENN difficult to justify in production environments compared to Borderline-
SMOTE.

VI. CONCLUSION

This study challenges the "one-size-fits-all" approach to handling class imbalance in credit risk. By
benchmarking boundary-based versus density-based techniques across varying imbalance regimes, we
demonstrate that operational viability often diverges from theoretical performance.

Our findings reveal a "False Positive Trap" in extreme fraud scenarios (0.17% imbalance). While Vanilla
SMOTE inflated the AUPRC to 0.825, its low F1-score (0.282) indicated a prohibitive rate of false alarms.
In contrast, Borderline-SMOTE proved superior, focusing synthetic generation on the decision boundary
to achieve a 2.4x improvement in Fl-score (0.690), thereby balancing risk capture with operational
precision.

Additionally, we identify a "Threshold of Necessity" at approximately 5% minority class prevalence. In
moderate imbalance scenarios, complex sampling failed to outperform the Cost-Sensitive Baseline,
suggesting that modern algorithms like XGBoost handle moderate skew more effectively through native
reweighting than through synthetic data manipulation. Furthermore, the consistent underperformance of
ADASYN confirms that density-based oversampling is ill-suited for noisy financial data, as it tends to
amplify outliers.

Implications for Practice: We advocate for a regime-specific strategy: adopt Borderline-SMOTE for high-
velocity, low-prevalence fraud detection to minimize customer friction, and adhere to Cost-Sensitive
Learning for regulatory credit scoring where data integrity is paramount. Future work will extend this
evaluation to model interpretability, examining the impact of synthetic boundaries on SHAP value
stability.
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