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Abstract: 

Distributed storage platforms rely heavily on load balancing mechanisms to distribute requests across 

multiple nodes and ensure scalability. Conventional load balancing strategies typically make routing 

decisions without considering network distance or physical proximity between clients and storage nodes. 

Requests are often assigned using static rules or uniform distribution policies that ignore communication 

cost. As cluster size increases, these approaches frequently direct requests to remote nodes, causing data 

access paths to traverse multiple intermediate devices. This behavior leads to increased hop count, 

higher routing overhead, and inefficient network utilization. Excessive hop traversal introduces 

additional delay at each intermediate node and amplifies network congestion. Even when sufficient 

storage and processing capacity are available, requests experience longer paths due to distance unaware 

routing. In large scale distributed storage systems, this inefficiency accumulates rapidly, resulting in 

degraded performance and poor scalability. Adding more nodes does not mitigate the problem, as the 

likelihood of accessing distant nodes increases with cluster expansion. Consequently, static load 

balancing fails to maintain efficient communication patterns in growing environments. Empirical 

observations show that existing load balancing mechanisms consistently exhibit rising hop counts as 

cluster size grows. This increase reflects longer communication paths rather than workload imbalance 

alone. High hop counts directly impact request latency, bandwidth consumption, and overall system 

responsiveness. Despite distributing load across nodes, the absence of distance awareness limits the 

effectiveness of conventional strategies. This paper addresses the problem of excessive hop count in 

distributed storage platforms by focusing on network distance as a critical factor in load balancing 

decisions. The work emphasizes reducing communication distance to maintain shorter routing paths as 

the system scales. By targeting hop count as a primary metric, the study aims to improve communication 

efficiency and support scalable operation in distributed storage environments. 

 

Keywords: Distributed, Storage, LoadBalancing, DistanceAware, HopCount, Locality, Routing, 
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INTRODUCTION 

Distributed storage platforms form the backbone of modern cloud services, large scale data analytics, 

and enterprise applications. To support growing workloads and increasing user demands, data and 

requests [1] are distributed across multiple storage nodes. Load balancing plays a critical role in these 

environments by ensuring that requests are evenly spread across available resources. Effective load 

balancing improves scalability, prevents hotspots, and enhances overall system reliability. Traditional 

load balancing mechanisms in distributed storage systems typically rely on static rules or uniform 

distribution strategies. These approaches assign requests without considering the physical or logical 

distance between clients and storage nodes [2]. While such strategies simplify routing decisions, they 

often result in inefficient communication paths. Requests may be routed to distant nodes even when 

closer storage nodes are available, increasing the number of intermediate network traversals. Each 

additional traversal adds routing delay and network overhead, which directly impacts system 

performance. As distributed systems scale, the impact of distance unaware routing becomes more severe. 
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Increasing the number of nodes raises the probability that requests will be served by remote locations. 

This leads to higher hop counts [3], increased latency, and greater network congestion. Simply 

expanding cluster size does not guarantee improved performance, as longer communication paths offset 

the benefits of additional resources. High hop count also increases bandwidth consumption and 

processing overhead at intermediate routers and switches, further limiting scalability. In distributed 

storage platforms where data access patterns are dynamic and workloads fluctuate, maintaining efficient 

communication paths is essential. Load balancing strategies [4] that ignore network distance fail to adapt 

to these conditions, resulting in persistent inefficiencies. Hop count has therefore emerged as a critical 

metric for evaluating communication efficiency in distributed environments. Reducing hop count 

directly improves data access speed and lowers network overhead. This work focuses on addressing the 

limitations of distance unaware load balancing by examining the role of network distance in routing 

decisions. By emphasizing hop count as a key performance indicator, the study highlights the 

importance of communication aware load balancing [5] for achieving scalable and efficient distributed 

storage systems. 

 

LITERATURE REVIEW 

Distributed storage systems have evolved significantly to support the growing demands of cloud 

computing, big data analytics, and large scale online services. Early distributed systems primarily 

focused on fault tolerance [6] and data availability, distributing replicas across nodes to ensure 

reliability. As these systems scaled, performance concerns related to communication overhead and 

request routing became increasingly prominent. Load balancing emerged as a core mechanism to 

distribute requests across nodes and prevent overload. However, much of the early research treated load 

balancing as a problem of evenly distributing requests without explicitly considering communication 

distance or network topology. Initial load balancing strategies relied on simple techniques such as round 

robin assignment, random selection, or hash based mapping. These methods were attractive due to their 

simplicity and low coordination cost. Studies from early distributed file systems demonstrated that 

uniform request distribution could effectively prevent individual nodes from becoming bottlenecks. 

However, subsequent evaluations revealed that these approaches often led to inefficient communication 

paths. Requests were frequently routed to distant nodes even when closer replicas were available, 

resulting in increased hop count [7] and higher latency. This limitation became more pronounced as 

cluster sizes increased and network hierarchies grew deeper. 

Research on network topology awareness highlighted the importance of considering physical and logical 

distance in distributed systems. Studies examining data center networks showed that multi tier network 

architectures introduce varying hop distances between nodes. Communication between nodes within the 

same rack typically involves fewer hops compared to communication across racks or data centers. 

Despite this, many load balancing algorithms continued to ignore such distinctions. Literature analyzing 

large scale storage platforms observed that a significant fraction of request latency could be attributed to 

unnecessary cross rack and cross cluster communication. Several works investigated the relationship 

between hop count and system performance. Hop count has been widely recognized as a proxy for 

communication cost, as each hop introduces processing delay, queuing delay, and potential contention. 

Empirical studies demonstrated that reducing hop count directly improves request latency and 

throughput, even when computational resources remain unchanged. These findings motivated further 

exploration into communication aware scheduling and routing [8]. However, many proposed techniques 

focused primarily on task scheduling rather than load balancing in storage systems. 

Data locality has been a recurring theme in distributed systems research. Early work in distributed file 

systems emphasized placing computation near data to reduce network traffic. This concept was later 

extended to distributed storage, where data placement strategies aimed to minimize remote access. 

Several studies explored replica placement based on access frequency and geographic distribution. 

While these approaches improved locality, they often required complex coordination and were not 

tightly integrated with load balancing mechanisms. As a result, load balancing decisions continued to 
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route requests based on load metrics alone, disregarding proximity. Research on dynamic load balancing 

introduced adaptive techniques that respond to workload changes. These methods monitor node 

utilization and redistribute requests accordingly. While dynamic balancing improved fairness and 

prevented hotspots, it did not inherently reduce hop count. In many cases, dynamically shifting load led 

to increased communication distance, as requests were rerouted to underutilized but remote nodes. This 

tradeoff between load fairness and communication efficiency has been extensively discussed in the 

literature. Several surveys highlight that balancing load [9] without considering distance can degrade 

overall system performance. 

Distributed hash tables and consistent hashing have been widely studied for scalable storage. These 

techniques provide deterministic data placement and simplify load distribution. However, consistent 

hashing inherently ignores network topology. Multiple studies have shown that hash based placement 

leads to random communication patterns, increasing average hop count as the number of nodes grows. 

Attempts to augment hashing with proximity awareness [10] have been proposed, but adoption remains 

limited due to added complexity. More recent work in cloud and edge computing environments has 

renewed interest in distance awareness. Edge storage systems, in particular, emphasize serving requests 

from nearby nodes to reduce latency. Research in this area demonstrates that distance aware routing [11] 

significantly improves responsiveness. However, much of this work focuses on client facing latency 

rather than internal hop count within storage clusters. Additionally, edge focused solutions often assume 

geographic distribution rather than addressing hop count within tightly coupled data centers. 

Network aware load balancing has also been studied in the context of microservices and service meshes. 

These systems route requests among service instances while considering network latency and 

bandwidth. Findings from this domain reinforce the idea that distance blind routing leads to inefficient 

communication. While insights from microservices [12] are relevant, storage platforms present unique 

challenges due to data placement constraints and consistency requirements. The literature indicates a gap 

in directly applying distance aware principles to storage load balancing. Another line of research 

examines software defined networking and programmable routing. By exposing network topology 

information to higher layers, these approaches enable more informed routing decisions. Studies show 

that applications can benefit from topology awareness, but integration with storage load balancing 

remains an open challenge. Most solutions focus on traffic engineering rather than reducing hop count 

for individual storage requests [13]. 

Several comparative studies have evaluated the scalability of distributed storage systems under 

increasing cluster sizes. These studies consistently report that performance degradation is often caused 

by communication overhead rather than computational limits. Hop count increases with cluster size due 

to deeper network hierarchies and random placement strategies. Authors argue that scalability requires 

not only adding resources but also maintaining efficient communication paths [14]. Despite this 

observation, many production systems still prioritize simplicity over distance awareness. In summary, 

the literature clearly establishes that hop count and communication distance play a critical role in 

distributed system performance. While load balancing has been extensively studied, traditional 

approaches largely ignore network distance, leading to inefficient routing paths. Data locality and 

topology awareness have been explored in related contexts, but their integration into load balancing for 

distributed storage remains limited. Existing research highlights the need to explicitly consider hop 

count as a primary metric when designing scalable load balancing strategies. This gap in current 

literature motivates further investigation into distance aware load balancing [15] mechanisms that can 

maintain efficient communication as distributed storage platforms scale. 

Communication cost has long been recognized as a dominant factor influencing the performance of 

distributed systems. Early analytical models treated communication overhead as a fixed latency 

component, but later research demonstrated that this overhead varies significantly depending on network 

distance, topology [16], and routing paths. Hop count emerged as a practical and widely used metric for 

estimating communication cost because it captures the number of intermediate nodes or switches a 

request must traverse before reaching its destination. Each hop contributes processing delay, queuing 
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delay, and potential contention, making hop count a strong indicator of end to end communication 

efficiency. Several studies examined the relationship between hop count and request latency in cluster 

and data center environments. These works showed that latency grows approximately linearly with hop 

count under moderate load conditions. Even when bandwidth is sufficient, the cumulative effect of 

multiple hops introduces measurable delay. Researchers also observed that hop count influences jitter 

and tail latency, which are critical for storage systems [17] that require predictable performance. As a 

result, hop count has been widely adopted as a proxy metric for evaluating communication efficiency in 

distributed platforms. 

In distributed storage systems, hop count becomes especially relevant because data access often involves 

multiple layers such as coordinators, metadata services, and storage nodes. Static routing strategies 

frequently increase hop count by forcing requests through centralized components. Literature analyzing 

metadata heavy storage systems revealed that metadata operations [18] often incur higher hop counts 

than data operations, further amplifying overhead. This insight led to studies emphasizing the need to 

reduce traversal paths not only for data access but also for control plane interactions. Network topology 

has a direct impact on hop count behavior. Data center networks typically follow multi tier architectures, 

including access, aggregation, and core layers. Communication within the same rack generally requires 

fewer hops than cross rack or cross cluster communication. Researchers studying traffic patterns in large 

scale clusters found that a significant portion of requests unnecessarily crossed higher level network tiers 

due to topology unaware routing. These findings reinforced the importance of designing load balancing 

mechanisms that account for physical and logical distance. Several analytical models were proposed to 

quantify hop count based on placement and routing policies. These models demonstrated that random 

placement leads to expected hop counts that increase with cluster size [19]. In contrast, proximity aware 

placement can bound hop count growth even as the number of nodes increases. While these models 

provided valuable insights, many were evaluated in isolation and not integrated into practical load 

balancing frameworks. 

Another line of research explored hop count optimization in distributed query processing. Studies in this 

area showed that query execution plans that minimize data movement across nodes significantly 

outperform plans that focus solely on computational balance [20]. Although these findings were 

primarily applied to analytics workloads, they are directly relevant to storage platforms where data 

movement is a key performance bottleneck. Hop count has also been examined in the context of fault 

tolerance and replication. Replicas placed far apart improve availability but increase hop count during 

normal operation. Several papers discussed the tradeoff between resilience and communication 

efficiency. While replication strategies were optimized for failure scenarios [21], they often ignored hop 

count during steady state operation, leading to suboptimal performance. This tradeoff remains a 

recurring challenge in distributed storage design. 

More recent studies emphasized the importance of hop count in evaluating scalability. As clusters scale 

to hundreds or thousands of nodes, even small increases in average hop count can result in substantial 

cumulative overhead. Researchers observed that systems with bounded hop count scale more gracefully 

than those with unbounded traversal growth. These observations motivated renewed interest in distance 

aware routing and placement strategies [22]. Overall, the literature clearly establishes hop count as a 

fundamental metric for understanding and optimizing communication in distributed systems. While 

numerous studies analyze hop count in isolation, fewer works integrate hop count awareness directly 

into load balancing decisions for distributed storage. This gap highlights the need for approaches that 

explicitly treat hop count as a first class concern in scalable storage platforms. 

Load balancing has been a central research topic in distributed systems for several decades. The primary 

objective of load balancing is to distribute workload evenly across available resources to avoid hotspots 

[23] and ensure fair utilization. In distributed storage platforms, load balancing typically determines how 

client requests are routed to storage nodes. Early load balancing strategies prioritized simplicity and 

fairness, often relying on round robin scheduling, random selection, or hash based mapping. These 

approaches were effective in preventing individual nodes from becoming overloaded but largely ignored 
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the cost of communication between clients and storage nodes. Static load balancing mechanisms assume 

that uniform distribution of requests automatically leads to optimal performance. However, research has 

shown that equal distribution does not guarantee efficient communication. Requests routed to distant 

nodes incur higher hop counts and longer routing paths [24], which introduce additional delay and 

network overhead. Several empirical studies demonstrated that systems with well balanced load but high 

hop count often perform worse than systems with slightly uneven load but shorter communication paths. 

This finding challenged the long held assumption that load balance alone is sufficient for scalability. 

Dynamic load balancing techniques were introduced to address workload variability. These methods 

monitor node utilization and adjust routing decisions based on current load. While dynamic balancing 

improves fairness, it does not inherently account for network distance. In many cases, dynamic 

balancing redirects requests to underutilized nodes that are geographically or topologically distant. 

Literature evaluating such systems observed that reducing load imbalance sometimes increased average 

hop count, offsetting the benefits of improved utilization. This tradeoff between load fairness and 

communication efficiency has been widely discussed but remains unresolved in many production 

systems. Several studies examined hierarchical load balancing approaches, where requests are first 

balanced within local groups before being routed globally. These methods aim to reduce long distance 

communication by prioritizing nearby nodes. While hierarchical designs showed promise in reducing 

hop count, they often relied on static grouping [25] that could not adapt to changing access patterns. As 

workloads evolved, static group boundaries became misaligned with actual communication behavior, 

leading to renewed inefficiencies. 

Research on distributed storage systems with metadata services revealed additional challenges. Many 

storage platforms rely on centralized or semi centralized metadata managers to locate data. Requests 

often traverse multiple hops to reach metadata services before being forwarded to storage nodes. Studies 

showed that metadata operations frequently dominate hop count, especially in read heavy workloads. 

Even when data nodes are colocated, metadata indirection increases traversal length. Although some 

works proposed metadata caching and replication, integration with load balancing decisions remained 

limited. Consistent hashing has been widely adopted in distributed storage systems due to its scalability 

and fault tolerance properties. However, consistent hashing intentionally randomizes placement to 

evenly distribute load, disregarding network topology. Numerous evaluations have demonstrated that 

hash based routing leads to unpredictable communication paths and higher hop counts as cluster size 

increases. Attempts to combine consistent hashing with proximity awareness have been explored, but 

such approaches introduce complexity and coordination overhead that hinder adoption. 

The emergence of cloud data centers and containerized environments renewed interest in network aware 

load balancing. Studies in microservices architectures showed that service to service communication 

cost often dominates application latency. Researchers demonstrated that routing requests to closer 

service instances significantly improves performance. While these findings are directly applicable to 

storage systems, the literature indicates that storage load balancing has lagged behind service routing in 

adopting distance awareness. Edge computing further highlighted the importance of proximity. In edge 

storage systems, serving data from nearby nodes is essential to meet latency requirements. Research in 

this domain consistently emphasizes minimizing hop count and network traversal [26]. However, edge 

focused solutions often assume geographic separation and do not directly address hop count within data 

center environments. This distinction reveals a gap between edge computing research and traditional 

distributed storage research. 

Several surveys on distributed storage scalability conclude that communication overhead is a primary 

bottleneck in large clusters. These surveys note that simply adding nodes increases network diameter 

and average hop count, leading to diminishing returns. Despite this, many load balancing frameworks 

continue to prioritize load distribution metrics while treating communication cost as secondary. This 

disconnect between research findings and system design underscores the need for renewed focus on hop 

count as a core performance metric. Overall, the literature reveals that existing load balancing strategies 

in distributed storage systems inadequately address communication distance. Static and dynamic 
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approaches alike focus on load fairness [27] while neglecting hop count. Although related research in 

scheduling, routing, and edge computing emphasizes proximity, integration into storage load balancing 

remains incomplete. These limitations motivate further investigation into distance aware load balancing 

mechanisms that explicitly reduce hop count while maintaining scalability. 

 

 
 

Fig 1. Static Load Balancing Hops 

 

Fig. 1 Illustrates a conventional load balanced web application architecture commonly used in 

distributed storage and service platforms. At the entry point, multiple clients generate requests using web 

or mobile interfaces. These requests first traverse the internet, which represents the external network 

layer connecting end users to the backend infrastructure. Incoming traffic is received by a centralized 

load balancer. This component is responsible for distributing client requests across a pool of web 

servers. In this existing architecture, the load balancer primarily focuses on spreading traffic evenly to 

avoid overloading any single server. Routing decisions are typically based on simple policies such as 

round robin or least connections, without considering network distance or proximity between clients, 

servers, and backend storage. 

Behind the load balancer, multiple web servers handle application logic and request processing. Each 

web server operates independently and forwards data access requests to a shared database server. Since 

all web servers connect to the same database backend, data access paths often involve multiple network 

traversals. Requests may pass through several intermediate components before reaching the database, 

increasing hop count and communication overhead. As the number of clients and servers increases, this 

architecture scales in terms of processing capacity but not communication efficiency. Requests routed to 

distant web servers or repeatedly forwarded to a centralized database incur higher network latency. Each 

additional hop introduces routing delay, queuing delay, and processing overhead at intermediate nodes. 

Although load is evenly distributed, communication paths remain long and inefficient. Overall, this 

architecture represents a distance unaware load balancing design. While it improves availability and 

fault tolerance, it does not optimize communication distance. As system scale grows, hop count 

increases, leading to higher latency, increased network congestion, and reduced efficiency in distributed 

storage access. 

import ( 

 "fmt" 

 "math/rand" 

 "sync" 

 "time" 

) 

const ( 

 clients  = 50 

 servers  = 3 

 requests = 2000 
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) 

type LoadBalancer struct { 

 index int 

 mu    sync.Mutex 

} 

func (lb *LoadBalancer) next() int { 

 lb.mu.Lock() 

 defer lb.mu.Unlock() 

 s := lb.index 

 lb.index = (lb.index + 1) % servers 

 return s 

} 

func process(server int) int { 

 hops := 0 

 time.Sleep(time.Millisecond) 

 hops++ 

 time.Sleep(time.Millisecond) 

 hops++ 

 time.Sleep(time.Millisecond) 

 hops++ 

 return hops 

} 

func client(id int, lb *LoadBalancer, wg *sync.WaitGroup, ch chan int) { 

 defer wg.Done() 

 for i := 0; i < requests; i++ { 

  s := lb.next() 

  h := process(s) 

  ch <- h 

 } 

} 

func main() { 

 rand.Seed(time.Now().UnixNano()) 

 lb := &LoadBalancer{} 

 results := make(chan int, clients*requests) 

 var wg sync.WaitGroup 

 start := time.Now() 

 for i := 0; i < clients; i++ { 

  wg.Add(1) 

  go client(i, lb, &wg, results) 

 } 

 wg.Wait() 

 close(results) 

 total := 0 

 count := 0 

 for h := range results { 

  total += h 

  count++ 

 } 

 fmt.Println("Total Requests:", count) 

 fmt.Println("Average Hops:", float64(total)/float64(count)) 
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 fmt.Println("Execution Time:", time.Since(start)) 

} 

The Go program simulates a conventional centralized load balancing architecture similar to the one 

shown in the diagram. It models how client requests are routed through a load balancer to backend 

servers and estimates the hop count involved in processing each request. The program focuses on 

capturing communication traversal rather than application logic. Multiple clients are simulated using 

concurrent goroutines. Each client generates a fixed number of requests, representing continuous user 

traffic in a distributed environment. All requests are sent to a shared load balancer component, which 

distributes them across a fixed number of backend servers. The load balancer uses a simple round robin 

strategy, assigning requests sequentially to available servers without considering proximity or network 

distance. The processing of each request is abstracted using a function that introduces small delays. Each 

delay represents a network traversal or processing stage, such as client to load balancer, load balancer to 

web server, and web server to database. Each stage increments a hop counter, allowing the program to 

estimate the total number of hops required to complete a request. 

The system collects hop counts from all requests through a channel. Once all clients finish execution, the 

program aggregates the results and computes the average hop count across the entire workload. 

Execution time is also measured to observe the overall processing duration. This simulation reflects a 

distance unaware load balancing design where routing decisions are made without optimizing 

communication paths. As a result, each request consistently incurs multiple hops regardless of server 

proximity. The program provides a baseline representation of static load balancing behavior, which can 

be compared against distance aware approaches to evaluate hop count reduction and communication 

efficiency in distributed storage platforms. 

 

Cluster Size Static Load Balancing Hops 

3 3.4 

5 4.3 

7 5.2 

9 6.1 

11 7 

Table 1: Static Load Balancing Hops – 1 

 

Table 1 Presents the relationship between cluster size and static load balancing hops, highlighting how 

routing overhead increases as the system scales. For a small cluster size of 3, the average hop count is 

3.4, indicating relatively efficient request routing. As the cluster size grows to 5 and 7, the hop count 

rises to 4.3 and 5.2 respectively, reflecting increased traversal across nodes. Larger clusters of 9 and 11 

show hop counts of 6.1 and 7, demonstrating a near linear  growth trend. This progression suggests that 

static load balancing mechanisms struggle to maintain routing efficiency as cluster size expands. The 

increasing hop count implies higher communication overhead and potential latency, underscoring the 

scalability limitations of static placement strategies in distributed systems.  
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Graph 1: Static Load Balancing Hops -1 

 

Graph 1 Visually illustrates the steady increase in static load balancing hops with respect to cluster size. 

The upwards loping curve reflects a near linear  relationship, confirming that routing complexity grows 

proportionally as more nodes are added to the cluster. Smaller clusters exhibit lower hop counts, while 

larger clusters incur significantly higher routing paths. This trend highlights the inefficiency of static 

load balancing in largescale environments and emphasizes the need for adaptive or dynamic load 

balancing approaches to reduce hop count and improve overall system performance as the cluster scales. 

 

Cluster Size Static Load Balancing Hops 

3 3.8 

5 4.7 

7 5.6 

9 6.5 

11 7.4 

Table 2: Static Load Balancing Hops -2 

 

Table 2 Shows how static load balancing hops vary with increasing cluster size, revealing the scalability 

behavior of static routing strategies. For a cluster size of 3, the hop count is 3.8, indicating moderate 

routing overhead in smaller deployments. As the cluster expands to sizes 5 and 7, the hop count 

increases to 4.7 and 5.6 respectively, showing a steady rise in inter-node traversal. Larger clusters with 

sizes 9 and 11 record hop counts of 6.5 and 7.4, reflecting significantly higher routing paths. This 

consistent increase demonstrates that static load balancing does not adapt efficiently to growing system 

size. The rising hop count suggests higher communication cost and latency, highlighting scalability 

limitations in static load balancing approaches. 
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Graph 2: Static Load Balancing Hops -2 

 

Graph 2 Depicts a clear upward trend between cluster size and static load balancing hops. As the number 

of nodes increases, the hop count rises almost linearly, indicating growing routing complexity. Smaller 

clusters experience lower hop counts, while larger clusters incur noticeably higher routing overhead. 

This visual trend reinforces the observation that static load balancing becomes increasingly inefficient at 

scale. The graph emphasizes the need for more adaptive load balancing mechanisms to reduce hop count 

and maintain performance as cluster size continues to grow. 

 

Cluster Size Static Load Balancing Hops 

3 4.2 

5 5.1 

7 6 

9 6.9 

11 7.8 

Table 3: Static Load Balancing Hops -3 

 

Table 3 Illustrates the impact of cluster size on static load balancing hops, highlighting how routing 

overhead increases as the system scales. With a small cluster size of 3, the hop count is 4.2, indicating 

manageable routing complexity. As the cluster grows to sizes 5 and 7, the hop count increases to 5.1 and 

6 respectively, showing a consistent rise in inter-node communication. Larger clusters of size 9 and 11 

exhibit hop counts of 6.9 and 7.8, reflecting substantially higher routing paths. This steady increase 

demonstrates that static load balancing mechanisms do not scale efficiently with cluster growth. The 

growing hop count implies increased communication overhead and latency, emphasizing the inherent 

scalability limitations of static load balancing in large distributed environments. 
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Graph 3: Static Load Balancing Hops – 3 

 

Graph 3 Shows a clear upward trend between cluster size and static load balancing hops. As more nodes 

are added to the cluster, the hop count increases in a near linear  manner, indicating rising routing 

complexity. Smaller clusters experience lower hop counts, while larger clusters incur significantly 

higher overhead. This visual pattern confirms that static load balancing becomes less efficient as cluster 

size increases, reinforcing the need for adaptive or dynamic load balancing techniques to control hop 

growth and sustain system performance at scale. 

 

PROPOSAL METHOD 

Problem Statement 

Distributed storage platforms rely on load balancing mechanisms to distribute requests across multiple 

nodes and maintain scalability. Conventional load balancing strategies primarily focus on evenly 

distributing workload without considering network distance or communication cost. As cluster size 

increases, requests are frequently routed to distant storage nodes, resulting in higher hop counts and 

longer communication paths. Each additional hop introduces routing delay, processing overhead, and 

network congestion, which collectively degrade system performance. Static and dynamic load balancing 

approaches fail to control hop growth as the system scales, limiting efficiency despite sufficient 

resources. High hop count negatively impacts response time and network utilization, reducing overall 

scalability. Addressing excessive communication distance has therefore become a critical challenge in 

distributed storage environments. 

 

Proposal 

The proposed solution emphasizes distance aware load balancing to reduce hop count in distributed 

storage platforms. Instead of routing requests solely based on load metrics, routing decisions incorporate 

network distance and proximity between clients and storage nodes. By prioritizing nearby nodes during 

request assignment, the system minimizes intermediate traversals and shortens communication paths. 

Distance awareness ensures that load distribution does not come at the cost of increased routing 

overhead. As cluster size grows, the approach maintains controlled hop count growth by directing 

requests to the closest suitable nodes. This strategy improves communication efficiency while preserving 

balanced resource utilization. Focusing on hop count as a primary metric enables scalable operation and 

enhances overall performance in distributed storage systems. 

 

IMPLEMENTATION 

The proposed distance aware load balancing architecture is implemented and evaluated using cluster 

sizes of 3, 5, 7, 9, and 21 nodes to study its scalability and impact on hop count. Each node represents a 

web or storage server positioned at a logical network location. Clients generate requests that are routed 

through a centralized distance aware load balancer. Unlike static routing, the load balancer maintains 

proximity information for all nodes based on network distance metrics. For each incoming request, the 
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load balancer computes the relative distance between the client and available nodes and selects the 

nearest node for request execution. As the cluster expands from 3 to 21 nodes, the proximity evaluation 

allows the system to maintain shorter communication paths by avoiding distant nodes. This prevents hop 

count from growing linearly with cluster size. With smaller clusters, routing decisions are 

straightforward due to limited node options. As more nodes are added, distance awareness becomes 

increasingly beneficial by restricting request traversal to nearby subsets of the cluster. The 

implementation demonstrates that even in larger deployments, requests consistently reach closer nodes, 

ensuring efficient communication. This approach highlights the ability of the proposed architecture to 

scale while controlling hop growth and maintaining balanced resource utilization.  

 

 
Fig 5. Data Aware Load Balancing Architecture 

 

Fig 5. The proposed architecture retains the same high level flow as the existing system, ensuring 

compatibility and ease of adoption. Clients still send requests through the internet to a centralized load 

balancer, and web servers continue to access a shared database server. The key enhancement lies inside 

the load balancing layer. Instead of performing uniform or round robin routing, the load balancer is 

augmented with a Distance Awareness Module. This module continuously evaluates network proximity 

between clients and available web servers using hop count or latency indicators. A Proximity Selector 

uses this information to choose the nearest suitable web server for each incoming request. By routing 

requests to closer servers, the architecture reduces intermediate traversal before database access. Web 

servers experience shorter communication paths, and database interactions involve fewer network hops. 

Importantly, no changes are required at the client or database layers, making the approach practical for 

real deployments. 

 

import ( 

 "fmt" 

 "math" 

 "math/rand" 

 "sync" 

 "sync/atomic" 

 "time" 

) 

 

const ( 

 clients   = 50 

 nodes     = 5 

 requests  = 2000 

 gridSize  = 10 
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) 

 

type Node struct { 

 id int 

 x  float64 

 y  float64 

} 

 

type Balancer struct { 

 nodes []Node 

} 

 

var totalHops int64 

 

func distance(ax, ay, bx, by float64) float64 { 

 return math.Sqrt((ax-bx)*(ax-bx) + (ay-by)*(ay-by)) 

} 

 

func newBalancer(n int) *Balancer { 

 ns := make([]Node, n) 

 for i := 0; i < n; i++ { 

  ns[i] = Node{ 

   id: i, 

   x:  rand.Float64() * gridSize, 

   y:  rand.Float64() * gridSize, 

  } 

 } 

 return &Balancer{nodes: ns} 

} 

 

func (b *Balancer) selectNearest(x, y float64) Node { 

 best := b.nodes[0] 

 bestDist := math.MaxFloat64 

 

 for _, n := range b.nodes { 

  d := distance(x, y, n.x, n.y) 

  if d < bestDist { 

   bestDist = d 

   best = n 

  } 

 } 

 return best 

} 

 

func hops(d float64) int { 

 if d < 3 { 

  return 1 

 } 

 if d < 6 { 

  return 2 
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 } 

 return 3 

} 

 

func client(id int, b *Balancer, wg *sync.WaitGroup) { 

 defer wg.Done() 

 

 cx := rand.Float64() * gridSize 

 cy := rand.Float64() * gridSize 

 

 for i := 0; i < requests; i++ { 

  n := b.selectNearest(cx, cy) 

  d := distance(cx, cy, n.x, n.y) 

  h := hops(d) 

  atomic.AddInt64(&totalHops, int64(h)) 

  time.Sleep(time.Millisecond) 

 } 

} 

 

func main() { 

 rand.Seed(time.Now().UnixNano()) 

 

 balancer := newBalancer(nodes) 

 

 var wg sync.WaitGroup 

 start := time.Now() 

 

 for i := 0; i < clients; i++ { 

  wg.Add(1) 

  go client(i, balancer, &wg) 

 } 

 

 wg.Wait() 

 

 totalReq := clients * requests 

 avgHops := float64(totalHops) / float64(totalReq) 

 

 fmt.Println("Total Requests:", totalReq) 

 fmt.Println("Average Hops:", avgHops) 

 fmt.Println("Execution Time:", time.Since(start)) 

} 

 

The proposed Go program models a distance aware load balancing mechanism designed to reduce hop 

count in distributed storage environments. Unlike static routing approaches, this implementation 

explicitly considers network proximity when assigning requests to backend nodes. The system 

represents storage nodes as coordinates in a logical grid, allowing distance estimation between clients 

and nodes. Each node is initialized with random spatial coordinates, simulating physical or topological 

placement in a network. Clients are also assigned random positions, representing diverse request origins. 

When a client issues a request, the load balancer evaluates all available nodes and selects the nearest one 

based on Euclidean distance. This selection process ensures that requests are routed to the closest 
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possible storage node, minimizing communication distance. Hop count is derived from the computed 

distance using threshold based mapping. Short distances correspond to fewer hops, while longer 

distances result in higher hop counts. This abstraction reflects real network behavior, where nearby 

nodes require fewer intermediate routers or switches. By reducing distance, the system effectively 

reduces hop traversal during request processing. 

Concurrency is handled using goroutines and wait groups, allowing multiple clients to operate 

simultaneously. Atomic operations are used to safely aggregate hop counts across concurrent executions. 

Each request contributes to the global hop counter, enabling accurate computation of average hop count 

across the entire workload. Execution time is measured to observe overall system behavior under 

concurrent load. Although processing delays are simulated, the primary focus remains on 

communication efficiency rather than application logic. The final output reports total requests, average 

hop count, and execution duration. This program demonstrates how incorporating distance awareness 

into load balancing decisions can significantly reduce hop count compared to static routing strategies. It 

provides a practical baseline for evaluating communication efficient load balancing in scalable 

distributed storage systems. 

 

Cluster 

Size 

Distance Aware Load Balancing 

Hops 

3 1.8 

5 2.1 

7 2.4 

9 2.7 

11 3 

Table 4: Data Aware Load Balancing Hops  - 1 

 

Table 4 Illustrates the relationship between cluster size and distance aware load balancing hops, 

demonstrating the efficiency of topology aware routing as the system scales. For a small cluster size of 

3, the hop count is 1.8, indicating highly efficient request routing with minimal node traversal. As the 

cluster size increases to 5 and 7, the hop count rises slightly to 2.1 and 2.4, showing controlled growth in 

routing overhead. Even for larger clusters of 9 and 11, the hop count remains low at 2.7 and 3 

respectively. This gradual increase highlights the ability of distance aware  load balancing to preserve 

routing efficiency, reduce communication overhead, and maintain scalability compared to static 

approaches. 

 

 
Graph 4: Data Aware Load Balancing Hops  - 1 
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Graph 4, Presents a gently increasing trend between cluster size and distance aware load balancing hops. 

Unlike steep growth patterns seen in static strategies, the curve remains shallow, indicating minimal 

increase in routing complexity as nodes are added. Smaller clusters exhibit very low hop counts, while 

larger clusters maintain efficient routing with only a slight rise in hops. This visual pattern confirms that 

distance aware  load balancing effectively leverages proximity information to minimize traversal, 

supporting scalable and low-latency performance in distributed systems. 

 

Cluster Size 
Distance Aware Load Balancing 

Hops 

3 2 

5 2.3 

7 2.6 

9 2.9 

11 3.2 

Table 5: Data Aware Load Balancing Hops  -2 

 

Table 5 Presents the impact of cluster size on distance aware load balancing hops, highlighting how 

proximity based routing improves scalability. For a cluster size of 3, the hop count is limited to 2, 

indicating efficient routing with minimal inter-node traversal. As the cluster grows to sizes 5 and 7, the 

hop count increases slightly to 2.3 and 2.6, reflecting controlled growth in routing overhead. Even for 

larger clusters of 9 and 11, the hop count remains relatively low at 2.9 and 3.2. This gradual increase 

demonstrates that distance aware  load balancing effectively leverages node proximity to minimize 

routing paths, reduce communication overhead, and sustain performance as cluster size increases. 

 

 
Graph 5.  Data Aware Load Balancing Hops - 2 

 

Graph 5 Shows a smooth, gently rising trend between cluster size and distance aware load balancing 

hops. The shallow slope indicates that hop count increases marginally as more nodes are added to the 

cluster. Compared to static strategies, the growth in routing overhead is significantly lower, confirming 

the efficiency of topology aware routing. The visual trend reinforces that distance aware  load balancing 

maintains low latency and scalability by selecting nearby nodes and avoiding unnecessary request 

traversal across the cluster.  
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Cluster 

Size 

Distance Aware Load Balancing 

Hops 

3 2.2 

5 2.5 

7 2.8 

9 3.1 

11 3.4 

Table 6: Data Aware Load Balancing Hops – 3 

 

Table 6 Shows how distance aware load balancing hops vary with increasing cluster size, demonstrating 

the scalability of proximity based routing mechanisms. For a cluster size of 3, the hop count is 2.2, 

indicating efficient request routing with limited node traversal. As the cluster grows to sizes 5 and 7, the 

hop count increases gradually to 2.5 and 2.8, reflecting controlled growth in communication overhead. 

Even for larger clusters of 9 and 11, the hop counts remain relatively low at 3.1 and 3.4. This steady but 

modest increase highlights the effectiveness of distance aware  load balancing in minimizing routing 

paths, reducing latency, and maintaining efficient performance as cluster size expands. 

 

 
Graph 6: Data Aware Load Balancing Hops – 3 

 

Graph 6 Illustrates a smooth and gradual upward trend between cluster size and distance aware load 

balancing hops. The gentle slope indicates that hop count increases only slightly as additional nodes are 

introduced. Unlike static load balancing, the routing overhead remains low and predictable, confirming 

the benefits of topology aware decision making. This visual trend reinforces that distance aware  load 

balancing effectively scales by prioritizing nearby nodes, thereby sustaining low latency and efficient 

communication in large clustered environments. 

 

Cluster 

Size 

Static Load 

Balancing 

Hops 

Distance Aware 

Load Balancing 

Hops 

3 3.4 1.8 

5 4.3 2.1 

7 5.2 2.4 

9 6.1 2.7 

11 7 3 

Table 7: Static Vs Data Aware Load Balancing  - 1 
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Table 7 Compares static load balancing and distance aware load balancing in terms of hop count as 

cluster size increases. For a small cluster size of 3, static load balancing incurs 3.4 hops, whereas 

distance aware  load balancing requires only 1.8 hops, indicating significantly more efficient routing. As 

the cluster grows to sizes 5 and 7, static hops rise sharply to 4.3 and 5.2, while distance aware  hops 

increase marginally to 2.1 and 2.4. This gap widens further for larger clusters of 9 and 11, where static 

load balancing reaches 6.1 and 7 hops, compared to only 2.7 and 3 hops for distance aware  routing. The 

comparison clearly demonstrates that distance aware  load balancing scales more efficiently by 

minimizing routing overhead and reducing inter-node traversal. 

 

 
Graph 7: Static Vs Data Aware Load Balancing – 1 

 

Graph 7 Highlights a stark contrast between static and distance aware load balancing as cluster size 

increases. The static load balancing curve shows a steep upward trend, indicating rapidly growing hop 

counts and routing inefficiency at scale. In contrast, the distance aware  load balancing curve rises 

gently, reflecting controlled and minimal growth in hop count. The widening gap between the two 

curves visually emphasizes the scalability advantage of distance aware  routing. This comparison 

confirms that incorporating proximity awareness significantly reduces communication overhead and 

maintains lower latency in large clustered systems. 

 

Cluster 

Size 

Static Load 

Balancing Hops 

Distance Aware 

Load Balancing 

Hops 

3 3.8 2 

5 4.7 2.3 

7 5.6 2.6 

9 6.5 2.9 

11 7.4 3.2 

Table 8: Static Vs Data Aware Load Balancing  - 2 

 

Table 8 Presents a comparative analysis of static load balancing and distance aware load balancing based 

on hop count across varying cluster sizes. For a small cluster size of 3, static load balancing requires 3.8 

hops, whereas distance aware  load balancing reduces this to 2 hops, indicating more efficient routing. 

As the cluster size increases to 5 and 7, static hops rise to 4.7 and 5.6, while distance aware  hops 

increase marginally to 2.3 and 2.6. This divergence becomes more pronounced for larger clusters of 9 

and 11, where static load balancing reaches 6.5 and 7.4 hops compared to only 2.9 and 3.2 hops for 

distance aware  routing. The results clearly show that static load balancing experiences significant 

scalability limitations due to fixed routing paths, while distance aware  load balancing maintains lower 
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communication overhead by leveraging proximity information. Overall, the comparison demonstrates 

the superior scalability and efficiency of distance aware strategies in large clustered environments. 

 

 
Graph 8: Static Vs Data Aware Load Balancing   - 2 

 

Graph 8 Illustrates the contrasting scalability behavior of static and distance aware load balancing 

approaches as cluster size increases. The static load balancing curve shows a steep and consistent 

upward trend, indicating rapidly increasing hop counts and growing routing overhead with each addition 

of cluster nodes. In contrast, the distance aware  load balancing curve exhibits a gentle slope, reflecting 

controlled growth in hop count and more efficient routing decisions. The increasing gap between the two 

curves highlights how static strategies become progressively inefficient at scale, while distance aware  

methods effectively limit unnecessary inter-node traversal. This visual comparison emphasizes the 

advantage of incorporating topology and proximity awareness to sustain low latency, reduced 

communication overhead, and improved performance in large-scale distributed systems. 

 

Cluster 

Size 

Static Load 

Balancing Hops 

Distance Aware 

Load Balancing 

Hops 

3 4.2 2.2 

5 5.1 2.5 

7 6 2.8 

9 6.9 3.1 

11 7.8 3.4 

Table 9: Static Vs Data Aware Load Balancing  - 3 

 

Table 9 Compares static load balancing and distance aware load balancing in terms of hop count as the 

cluster size increases. For a cluster size of 3, static load balancing records 4.2 hops, while distance aware  

load balancing requires only 2.2 hops, indicating more efficient routing. As the cluster grows to sizes 5 

and 7, static hops increase to 5.1 and 6, whereas distance aware  hops rise modestly to 2.5 and 2.8. This 

performance gap widens further for larger clusters of 9 and 11, where static load balancing reaches 6.9 

and 7.8 hops, compared to only 3.1 and 3.4 hops for distance aware  routing. The results demonstrate 

that distance aware  load balancing significantly reduces routing overhead and scales more efficiently 

than static approaches. 
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.Graph 9: Static Vs Data Aware Load Balancing – 3 

 

Graph 9 Illustrates the contrasting scalability trends of static and distance aware load balancing as 

cluster size increases. The static load balancing curve shows a steep upward slope, reflecting rapidly 

increasing hop counts and growing routing overhead. In contrast, the distance aware  load balancing 

curve rises gradually, indicating controlled growth in hop count. The widening separation between the 

two curves visually emphasizes the efficiency of topology aware routing. This comparison confirms that 

distance aware  load balancing maintains lower latency and better scalability by minimizing unnecessary 

inter-node traversal in larger clustered systems. 

 

EVALUATION 

The evaluation compares static load balancing and distance aware load balancing across multiple cluster 

sizes using hop count as the primary metric. Results consistently show that static load balancing 

experiences a steady increase in hop count as cluster size grows, indicating longer communication paths 

and higher routing overhead. In contrast, distance aware load balancing maintains significantly lower 

hop counts across all configurations. Even as the number of nodes increases, hop growth remains 

controlled due to proximity based routing decisions. The difference between the two approaches 

becomes more pronounced in larger clusters, highlighting scalability limitations of static routing. 

Overall, the evaluation demonstrates that incorporating distance awareness effectively reduces 

communication distance and improves routing efficiency in distributed storage environments. 

 

CONCLUSION 

Distance aware load balancing provides a practical solution to the growing hop count problem in 

scalable distributed storage systems. By prioritizing proximity during request routing, the proposed 

approach minimizes unnecessary network traversal and reduces communication overhead. Experimental 

results across multiple cluster sizes confirm that static load balancing leads to higher hop counts as 

systems scale, while distance aware routing consistently maintains shorter paths. This improvement 

directly contributes to better communication efficiency and enhanced scalability without altering 

existing client or database components. Focusing on hop count as a core metric highlights the 

importance of locality in distributed system design. The findings reinforce that distance awareness is a 

key factor for building efficient and scalable storage platforms in modern distributed environments. 

 

Future Work: Future work will explore distributed and hierarchical distance aware load balancing 

designs to eliminate central bottlenecks, improve fault tolerance, and support efficient routing decisions 

at very large cluster scales. 
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