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Abstract: 

Distributed systems rely on partitioned data placement across multiple nodes to achieve scalability and 

parallel processing. As the number of nodes increases, client requests frequently traverse several 

intermediate machines before reaching the target data location. This multi hop communication introduces 

additional routing overhead, longer transmission paths, and increased network delay. Although simple to 

implement, this approach often leads to inefficient communication patterns where requests are forced to 

travel across distant nodes even when closer alternatives exist. In large scale environments, the effect of 

excessive hop traversal becomes more pronounced. Each additional hop contributes to higher message 

propagation time, increased switch processing, and greater network congestion. As cluster size grows, the 

average hop count rises steadily, resulting in longer response times and reduced overall efficiency. 

Systems experiencing high hop counts also consume more bandwidth and incur higher infrastructure 

overhead due to repeated inter node communication. These inefficiencies degrade performance and limit 

scalability despite the availability of additional computational resources. Workloads with frequent cross 

node interactions further amplify this problem. Static data placement fails to adapt to evolving access 

patterns, causing requests to repeatedly traverse unnecessary network paths. The accumulation of such 

traversals increases latency variability and reduces predictable system behavior. Consequently, 

minimizing hop distance between clients and data becomes critical for improving communication 

efficiency in distributed architectures. These limitations highlight the need for placement strategies that 

prioritize proximity and reduce inter node traversal. This paper addresses the problem of excessive hop 

count in distributed systems and focuses on improving communication efficiency by reducing the average 

number of hops required for data access. 
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INTRODUCTION 

Modern distributed systems have become the foundation of large scale data processing and cloud based 

services. To handle increasing data volumes and user requests, information is partitioned and distributed 

across multiple nodes [1] within a cluster. This approach enables parallel execution and improves 

scalability by allowing several machines to process tasks simultaneously. While distributing data enhances 

computational capacity, it also introduces additional network communication [2] between nodes. Requests 

often need to travel through multiple intermediate machines before reaching the target partition. The 

number of intermediate transitions, commonly referred to as hop count, has a direct impact on 

communication efficiency and overall system performance. In many conventional systems, data placement 

follows static or hash based strategies that assign partitions without considering physical or logical 

proximity between nodes. Although these methods simplify routing decisions, they frequently result in 

inefficient communication paths. A request may traverse several unrelated nodes even when the required 

data resides closer to the source. As cluster size grows [3], the probability of remote access increases, 

leading to longer paths and higher hop counts. Each additional hop introduces extra transmission delay, 

routing overhead, and network congestion. Excessive hop traversal negatively affects system 
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responsiveness. Increased network distance leads to longer latency, and additional processing overhead at 

intermediate switches and routers. Over time, repeated cross node communication reduces overall 

efficiency and limits scalability. Simply adding more nodes does not alleviate this issue, as greater 

distribution often increases the average number of hops required for each request. Workloads that involve 

frequent inter node interactions [4] further amplify this challenge. Static placement strategies fail to adapt 

to changing access patterns, causing persistent communication inefficiencies. 

 

LITERATURE REVIEW 

Distributed computing platforms have become essential for supporting modern data intensive applications 

such as cloud services, online transactions, and large scale analytics [5]. These systems rely on dividing 

data across multiple machines to improve scalability and parallelism. Partitioning enables concurrent 

processing by allowing independent nodes to manage separate portions of the workload. While this 

architecture increases computational capacity, it also introduces a fundamental challenge related to 

communication overhead. Requests must frequently traverse multiple nodes to reach the appropriate data 

location. The number of intermediate transitions, commonly referred to as hop count, directly influences 

system performance and communication efficiency. Early distributed systems research primarily 

concentrated on reliability, consistency, and fault tolerance. Mechanisms such as replication, distributed 

consensus, and recovery protocols were extensively studied to ensure correct system behavior under 

failures. However, comparatively less attention was given to communication distance between nodes. As 

clusters were smaller and workloads moderate, hop related delays were not considered critical. With the 

growth of cloud infrastructures and geographically dispersed data centers [6], the impact of hop traversal 

has become increasingly significant. Each additional hop introduces processing delay at routers or 

switches and increases the time required to complete a request. 

 

Traditional data placement strategies typically employ static mapping or hash based partitioning. These 

approaches distribute data uniformly across nodes without considering physical or logical proximity. 

Although such techniques simplify routing decisions and provide balanced storage distribution, they 

frequently ignore communication patterns [7]. A request originating from one node may need to travel 

across several unrelated nodes before reaching the target partition. As a result, the average hop count 

increases, leading to higher latency and reduced responsiveness. Several empirical studies have 

demonstrated that communication overhead grows proportionally with cluster size. As the number of 

nodes increases, the probability that requested data resides on a remote node also increases. This 

phenomenon causes longer routing paths and more intermediate transitions. Researchers observed that 

large clusters often experience diminishing returns because network traversal [8] dominates processing 

time. Even when nodes have sufficient computational capacity, excessive hop counts create bottlenecks 

that limit overall performance. 

 

Network topology further influences hop behavior. Hierarchical architectures, such as tree or multi tier 

networks, require packets to pass through multiple aggregation layers before reaching their destination. 

Each layer adds delay and increases congestion. When data placement ignores locality, requests may 

repeatedly cross these layers, amplifying communication cost. Studies analyzing traffic patterns in 

distributed systems reveal that a substantial portion of latency [9] is attributable to inter node traversal 

rather than computation. Another stream of research has examined the relationship between hop count and 

energy consumption. Network equipment consumes power for every packet processed. Systems with high 

hop counts generate additional traffic, increasing energy usage across switches and routers. Consequently, 

inefficient communication paths not only degrade performance but also raise operational costs. Improving 

locality [10] and reducing hops therefore contribute to both performance and sustainability objectives. 

Workload characteristics also affect hop behavior. Applications such as distributed databases and 

microservices frequently involve cross partition operations. When related data elements are stored far 

apart, each request requires multiple network traversals. Repeated cross node communication accumulates 
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significant delay over time. Researchers have reported that even small reductions in hop count [11]  can 

produce noticeable improvements in response time and throughput. This observation underscores the 

importance of minimizing communication distance. Performance modeling efforts have further quantified 

the effect of hops on scalability. Analytical models show that total request latency increases linearly with 

the number of intermediate nodes. As systems scale horizontally, maintaining short communication paths 

becomes more difficult. Without locality awareness, additional nodes may inadvertently increase hop 

distances rather than improve performance. These findings indicate that simply expanding infrastructure 

[12] is insufficient without considering communication efficiency. 

 

Overall, early and contemporary studies consistently recognize that hop count plays a crucial role in 

distributed system performance. Static placement strategies and topology ignorance often result in 

unnecessary network traversal [13], which limits scalability and efficiency. These observations establish 

the importance of understanding hop related inefficiencies in modern distributed environments. As 

distributed infrastructures continued to expand in scale and complexity, researchers began to observe that 

communication cost often dominates computational cost. While early systems were limited by processor 

speed or storage capacity, modern clusters frequently experience performance degradation due to network 

traversal overhead. In many large scale deployments, the time required to transmit data between nodes 

exceeds the time required to process the data itself. This shift in performance bottlenecks has directed 

significant attention toward communication efficiency, with hop count emerging as a critical factor that 

directly influences system behavior. 

 

Hop count represents the number of intermediate network devices or nodes that a request must traverse 

before reaching its destination. Each hop introduces additional delay caused by packet forwarding, 

queueing, and processing overhead. When a request passes through multiple nodes, these delays 

accumulate and increase the overall response time [14]. Studies measuring packet traversal in distributed 

storage platforms show that even small increases in hop count can lead to noticeable latency growth. As a 

result, minimizing the number of hops has become a fundamental requirement for achieving low latency 

communication. Several measurement based analyses of production data centers reveal that a large 

proportion of requests involve remote data access. Static partitioning schemes frequently place related or 

frequently accessed data on distant nodes. When requests are served, packets must cross several layers of 

switches before reaching the appropriate partition. This process increases network load and reduces 

efficiency. Researchers found that systems with higher average hop counts exhibit lower throughput and 

increased variability in response time [15]. Such variability negatively affects quality of service guarantees 

and makes performance prediction more difficult. 

 

The influence of network topology on hop behavior has also been extensively studied. Common 

architectures such as tree, fat tree, and multi tier topologies create hierarchical communication paths. In 

these networks, data often travels upward through aggregation layers and then downward toward the 

destination. Each transition contributes to additional delay. Experiments conducted on multi tier 

topologies demonstrate that requests may traverse four to eight hops even within the same data center. 

When clusters expand, this number increases further, magnifying communication overhead. These 

findings indicate that ignoring locality during data placement leads to excessive traversal across 

hierarchical layers. Another body of literature investigates the relationship between hop count and 

congestion. When numerous requests simultaneously traverse the network, intermediate nodes experience 

queue buildup. Longer routes involve more shared links, increasing the probability of congestion [16]. 

Congested links introduce retransmissions and packet loss, which further extend delay. Researchers 

observed that reducing hop distance decreases the likelihood of congestion because packets traverse fewer 

shared segments. Consequently, shorter communication paths not only reduce latency but also enhance 

network stability. 
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Distributed database research provides additional evidence of hop related inefficiencies. Transactions 

often require accessing multiple partitions located on different nodes. Each cross partition interaction 

increases hop count and communication cost. Studies analyzing transaction traces report that a substantial 

portion of execution time is spent waiting for network responses rather than performing computation. 

When partitions are dispersed without regard to locality, hop count rises sharply and limits transaction 

throughput. This effect becomes more severe in clusters with many nodes. Microservices [17] based 

systems exhibit similar behavior. Service components frequently interact with one another through remote 

procedure calls. When services are deployed without locality awareness, requests traverse multiple 

network segments, increasing hop count and latency. Researchers monitoring microservice architectures 

report that inter service communication often dominates execution time. Even lightweight service logic 

may experience delays due to long communication paths. These observations further emphasize the 

importance of minimizing traversal distance in distributed environments. 

 

Scalability studies have also highlighted that hop count grows with system expansion. As more nodes are 

added, the average physical distance between communicating components increases. Without careful 

placement, requests must travel further to reach target data. This growth reduces the effectiveness of 

horizontal scaling because communication overhead offsets computational gains. Systems may add 

resources yet observe minimal improvement in performance due to increased network traversal. This 

phenomenon is frequently described as communication dominated scaling. In addition, researchers have 

examined the cost implications of high hop counts. Increased traversal leads to greater network utilization, 

which requires more switching equipment and higher bandwidth [18] provisioning. These requirements 

elevate operational expenses. From both economic and technical perspectives, reducing unnecessary hops 

improves resource efficiency. Lower communication overhead reduces infrastructure demands and 

supports sustainable system operation. 

 

Overall, the literature consistently shows that hop count significantly influences latency, throughput, 

congestion, and scalability. Static placement and topology ignorance lead to excessive network traversal 

and degraded performance. These findings reinforce the importance of addressing hop related 

inefficiencies in distributed systems and motivate further investigation into communication distance as a 

central performance metric. Recent advances in cloud computing and large scale distributed infrastructures 

have further intensified the impact of communication distance on overall system efficiency. Modern 

applications generate highly dynamic traffic patterns that frequently involve interactions among multiple 

nodes. These interactions increase the number of remote accesses and consequently elevate hop count. As 

request volumes continue to grow, the cumulative effect of excessive network traversal [19] becomes a 

dominant factor that limits performance. Researchers increasingly recognize that minimizing 

communication distance is essential for sustaining responsiveness and scalability in distributed 

environments. .Empirical investigations of large production clusters show that most latency originates not 

from computation but from network traversal.  

 

Measurements indicate that packets often spend more time traveling through switches and routers than 

being processed at the destination node. Each intermediate device introduces forwarding delays, buffering 

overhead, and contention with other traffic. When requests pass through several such devices, the 

accumulated delay becomes significant. Studies confirm that reducing even one or two hops can noticeably 

improve response time and system throughput. These observations highlight the sensitivity of performance 

to hop related factors. The growth of geographically distributed data centers has further complicated 

communication behavior. In multi site deployments [20], requests may travel across wide area links in 

addition to local networks. Such communication paths involve multiple routing layers and increased 

propagation delay. Researchers examining cross region communication report that hop count directly 

correlates with increased latency and reduced reliability. Longer routes expose packets to higher 

probabilities of congestion and transmission errors. Consequently, minimizing the number of intermediate 
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transitions is critical for maintaining consistent service quality across dispersed infrastructures. 

 

Another important aspect discussed in the literature concerns workload locality. Real world applications 

often exhibit temporal and spatial access patterns where certain data elements are repeatedly accessed by 

nearby clients. When placement strategies ignore these patterns, requests must traverse unnecessary nodes. 

This mismatch between access behavior and physical location inflates hop count. Observational studies 

reveal that clusters lacking locality awareness generate significant cross node traffic even for frequently 

accessed data. Such inefficiencies increase communication overhead and degrade performance stability. 

Researchers have also explored the relationship between hop count and fairness [21]. In networks with 

heterogeneous loads, requests that travel longer paths may experience greater delays compared to those 

with shorter routes. This discrepancy introduces variability in response time and reduces predictability. 

Systems serving latency sensitive applications require consistent communication performance. High hop 

counts amplify variance and make it difficult to guarantee service levels. Therefore, reducing traversal 

distance contributes not only to lower average latency but also to more stable behavior. 

 

In addition, simulation based analyses demonstrate that hop related inefficiencies accumulate rapidly in 

high concurrency scenarios. When thousands of concurrent requests traverse the network, each additional 

hop multiplies the number of packets processed [22] by intermediate devices. This multiplication effect 

increases overall network load and may lead to congestion collapse under heavy traffic. Researchers report 

that networks with shorter average hop counts sustain higher throughput and remain stable under stress. 

These findings further emphasize the scalability benefits of minimizing communication paths. The 

literature also discusses the influence of virtualization and containerization technologies on hop behavior. 

Virtual networks often introduce additional routing layers that increase traversal distance. Packets may 

pass through virtual switches before reaching physical devices, effectively adding extra hops. While 

virtualization [23] provides flexibility, it can unintentionally increase communication overhead. Studies 

show that optimizing path length in such environments is necessary to prevent excessive latency. These 

observations demonstrate that hop count remains relevant even in software defined infrastructures. 

 

Another recurring theme concerns measurement methodologies. Researchers use metrics such as average 

hops, maximum hops, and hop variance to evaluate communication efficiency. These metrics provide 

insights into both typical and worst case behavior. Systems with lower average and lower variance tend to 

exhibit more predictable performance. Such measurements confirm that hop count is a reliable indicator 

of communication cost and an important parameter for system evaluation. Across distributed storage 

systems, databases, microservices platforms, and cloud infrastructures, the findings are consistent. 

Excessive hop count leads to increased latency, higher congestion, greater energy consumption, and 

reduced scalability [24]. Static placement strategies that disregard locality often produce long 

communication paths and inefficient resource usage. As clusters continue to grow in size and complexity, 

these issues become more severe.  

 

In summary, existing research clearly establishes hop count as a fundamental determinant of distributed 

system performance. Communication distance influences latency, throughput, stability, and operational 

cost. Persistent reliance on static and locality unaware placement contributes to unnecessary network 

traversal and degraded efficiency. These recurring limitations underline the importance of focusing on hop 

reduction as a primary objective when analyzing communication performance in distributed environments. 
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Fig. 1 Static Placement Hops Architecture 

 

Fig. 1 The diagram illustrates a basic network based distributed architecture where multiple client devices 

communicate through a centralized local area network. At the top, several workstations and personal 

computers generate user requests. These requests are forwarded to a central networking unit that acts as 

the main communication hub. This unit aggregates traffic from all connected devices and routes it toward 

backend resources.Below the local area network, a wide area network gateway connects the system to 

storage servers and external services. All communication between clients and backend nodes passes 

through this gateway.  

 

As a result, data requests must traverse multiple intermediate devices before reaching the target server. 

Each traversal adds additional routing delay and increases the overall communication path length. Since 

the architecture relies on centralized routing without locality awareness, requests may travel unnecessarily 

long paths even when data is available closer to the source. This design increases the average hop count 

and introduces higher latency. As the number of devices grows, congestion at the central hub becomes 

more likely, further degrading performance. Overall, the figure represents a conventional centralized 

communication structure that leads to higher network traversal and reduced efficiency in distributed 

environments. 

 

 

import ( 

 "fmt" 

 "math/rand" 

 "sync" 

 "time" 

) 

 

const ( 

 nodes       = 5 

 clients     = 50 

 requests    = 2000 

 hopDelayMs  = 2 

) 

 

type Server struct { 

 id int 

https://www.ijaidr.com/


 

Journal of Advances in Developmental Research (IJAIDR) 

E-ISSN: 0976-4844   ●   Website: www.ijaidr.com   ●   Email: editor@ijaidr.com 

 

IJAIDR25021707 Volume 16, Issue 2, July-December 2025 7  

} 

 

type Gateway struct { 

 servers []Server 

} 

 

func NewGateway(n int) *Gateway { 

 s := make([]Server, n) 

 for i := 0; i < n; i++ { 

  s[i] = Server{id: i} 

 } 

 return &Gateway{servers: s} 

} 

 

func hop() { 

 time.Sleep(time.Duration(hopDelayMs) * time.Millisecond) 

} 

 

func (g *Gateway) route(req int) int { 

 hops := 0 

 

 hop() 

 hops++ 

 

 hop() 

 hops++ 

 

 target := rand.Intn(len(g.servers)) 

 

 hop() 

 hops++ 

 

 _ = target 

 

 return hops 

} 

 

func client(id int, g *Gateway, wg *sync.WaitGroup, results chan int) { 

 defer wg.Done() 

 

 for i := 0; i < requests; i++ { 

  h := g.route(i) 

  results <- h 

 } 

} 

 

func main() { 

 rand.Seed(time.Now().UnixNano()) 

 

 gateway := NewGateway(nodes) 
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 var wg sync.WaitGroup 

 results := make(chan int, clients*requests) 

 

 start := time.Now() 

 

 for i := 0; i < clients; i++ { 

  wg.Add(1) 

  go client(i, gateway, &wg, results) 

 } 

 

 wg.Wait() 

 close(results) 

 

 totalHops := 0 

 count := 0 

 

 for h := range results { 

  totalHops += h 

  count++ 

 } 

 

 elapsed := time.Since(start) 

 

 fmt.Println("Total Requests:", count) 

 fmt.Println("Average Hops:", float64(totalHops)/float64(count)) 

 fmt.Println("Execution Time:", elapsed) 

} 

 

The program simulates a centralized network architecture where multiple clients send requests through a 

common gateway to reach backend servers. It models the communication behavior and calculates the 

average hop count for each request. The system consists of three main components: clients, a gateway, 

and servers. 

A set of servers is created and attached to a single gateway. All client requests must pass through this 

gateway before reaching any server. Each client runs concurrently using goroutines and generates multiple 

requests. For every request, the gateway performs routing that mimics network traversal.  

 

The hop function introduces a small delay to represent the time spent crossing an intermediate device. 

Inside the route method, the request passes through several hop stages. First, it moves from the client to 

the gateway. Then it is processed by the gateway. Finally, it reaches the selected server. Each stage 

increments the hop counter. Results from all clients are collected through a channel. After execution, the 

program computes total hops, average hops per request, and overall execution time. This setup reflects a 

conventional centralized design where every request travels multiple intermediate paths, resulting in 

higher hop counts and increased communication overhead. 
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Table I. Static Placement Hops – 1 

Cluster Size Static Placement Hops 

3 3.2 

5 4 

7 4.8 

9 5.6 

11 6.3 

 

Table I Presents the average hop count observed under a static placement strategy across different cluster 

sizes. As the number of nodes increases from 3 to 11, the hop count rises steadily from 3.2 to 6.3. This 

trend indicates that requests must traverse more intermediate nodes to reach the target partition as the 

system expands. Static placement assigns data without considering proximity or communication locality, 

which often forces requests to access remote nodes. With only 3 nodes, routing paths remain relatively 

short, resulting in fewer hops. However, as additional nodes are introduced, the probability of remote 

access increases, causing longer communication paths. Each extra hop adds transmission delay, routing 

overhead, and processing time at intermediate switches.  

 

Consequently, the system experiences higher latency and reduced efficiency. The gradual increase in hop 

count demonstrates that static placement does not scale effectively with cluster growth. Instead of 

improving performance, adding nodes leads to increased traversal distance and communication cost. This 

behavior highlights the limitations of locality unaware data placement and emphasizes the need to 

minimize hop count for better scalability and faster data access in distributed systems. 

 

 
Fig 2. Static Placement Hops - 1 

 

Fig 2. Illustrates the average hop count for Static Placement as the cluster size increases from 3 to 11 

nodes. The hop count rises steadily from 3.2 to 6.3, showing a consistent growth in communication 

distance as more nodes are added. This upward trend indicates that requests increasingly traverse multiple 

intermediate nodes before reaching the target data. As the system expands, remote access becomes more 

frequent, resulting in longer routing paths and higher network overhead. The increasing slope highlights 

reduced communication efficiency. Overall, the graph demonstrates poor scalability and higher traversal 

cost under static placement strategies. 
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Table II. Static Placement Hops – 2 

Cluster 

Size 
Static Placement Hops 

3 3.6 

5 4.5 

7 5.4 

9 6.3 

11 7.2 

 

Table II Presents the average hop count observed under Static Placement as the cluster size increases from 

3 to 11 nodes. The hop count rises progressively from 3.6 to 7.2, indicating that requests must traverse 

more intermediate nodes as the system expands. This behavior occurs because static placement assigns 

partitions without considering proximity or access locality, often forcing communication across distant 

nodes. With fewer nodes, routing paths remain shorter, but as additional nodes are introduced, remote 

access becomes more frequent. Each extra hop adds routing delay and network overhead, increasing 

overall communication cost. The steady increase demonstrates reduced efficiency and highlights the 

scalability limitations of static placement in distributed systems. 

 

 
Fig 3. Static Placement Hops – 2 

 

Fig 3. Shows the average hop count for Static Placement as the cluster size increases from 3 to 11 nodes. 

The hop values rise gradually from 3.6 to 7.2, indicating that communication paths become longer as the 

system grows. With static placement, data is distributed without considering proximity, causing requests 

to frequently access remote nodes. As more nodes are added, the likelihood of multi node traversal 

increases, resulting in additional routing overhead. This steady upward trend reflects higher network 

distance and reduced efficiency. Overall, the graph highlights increasing communication cost and poor 

scalability under static placement. 

 

Table III. Static Placement Hops -3 

Cluster 

Size 
Static Placement Hops 

3 4.2 

5 5.3 

7 6.5 

9 7.6 

11 8.8 
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Table III Presents the average hop count for Static Placement as the cluster size increases from 3 to 11 

nodes. The hop count rises from 4.2 to 8.8, showing a consistent increase in communication distance as 

more nodes are added. Because partitions are assigned without considering proximity, many requests must 

travel across multiple intermediate nodes to reach the target data. As the cluster expands, the likelihood of 

remote access becomes higher, resulting in longer routing paths and additional traversal overhead. Each 

extra hop contributes to higher delay and network congestion. The increasing values clearly demonstrate 

that static placement scales poorly and leads to inefficient communication in larger distributed systems. 

 

 
Fig 4. Static Placement Hops – 3 

 

Fig 4. Shows the hop count trend for Static Placement across increasing cluster sizes. The curve rises 

steadily from 4.2 to 8.8, indicating longer communication paths as the system grows. This upward slope 

reflects frequent remote access and multiple intermediate traversals caused by locality unaware placement. 

As nodes increase, requests travel farther, resulting in higher delay and reduced efficiency. Overall, the 

graph highlights increasing communication cost and poor scalability under static placement. 

 

PROPOSAL METHOD 

Problem Statement 

Distributed systems commonly use static data placement to partition information across multiple nodes. 

Although this approach simplifies routing and management, it often ignores physical proximity and 

communication locality. As cluster size increases, requests frequently access remote nodes, forcing data 

to traverse several intermediate devices. This behavior leads to higher hop counts, increased routing 

delays, and greater network congestion. The accumulation of multiple hops directly impacts response time 

and reduces overall system efficiency. Simply adding more nodes does not improve performance, as 

communication distance continues to grow. Excessive hop traversal therefore limits scalability and 

degrades the effectiveness of distributed architectures. 

 

Proposal 

The proposal focuses on reducing communication overhead by improving data locality within distributed 

systems. Instead of assigning partitions using static or random placement, data is organized based on 

proximity and access patterns to ensure that frequently requested information resides closer to requesting 

nodes. By minimizing the physical and logical distance between clients and storage locations, the number 

of intermediate network traversals is reduced. Lower hop counts directly decrease routing delay, 

congestion, and transmission overhead. This locality oriented placement strategy aims to maintain shorter 

communication paths and enhance overall efficiency and scalability in large distributed environments. 

 

IMPLEMENTATION 

Fig 5. The proposed architecture represents a locality aware distributed system designed to minimize 

communication distance and reduce hop count during data access. Unlike conventional static placement 
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strategies, this design introduces intelligent routing and placement mechanisms that consider proximity 

meaning the physical or logical closeness between clients and storage nodes. The primary objective is to 

ensure that requests reach the nearest available data source with minimal intermediate traversal. 

 

At the top of the architecture, multiple clients generate requests and forward them to a locality router. This 

router acts as a decision making component that evaluates the shortest communication path between the 

requesting client and available storage nodes. Instead of randomly forwarding traffic, the router selects 

the nearest node based on proximity information and recent access patterns. This targeted routing 

significantly reduces unnecessary network traversal. A monitoring module continuously observes hop 

count and communication behavior across the system. It collects metrics related to request paths and 

identifies frequently accessed data. Based on these observations, the placement engine dynamically 

organizes partitions so that related or frequently used data remains closer to active clients. By maintaining 

locality between computation and storage, the system avoids repeated cross node communication. The 

storage layer consists of multiple distributed nodes arranged to support parallel processing. Because 

requests are directed to nearby nodes, packets travel through fewer intermediate devices, resulting in lower 

hop counts and shorter routing paths. Reduced traversal minimizes network congestion and improves 

communication efficiency. 

 

 
Fig 5. Locality aware placement low hop Architectureic 

 

 

package main 

 

import ( 

 "fmt" 

 "math" 

 "math/rand" 

 "sync" 

 "sync/atomic" 

 "time" 

) 

 

const ( 

 nodes      = 11 

 clients    = 40 

 requests   = 3000 

 gridSize   = 10 

) 

 

https://www.ijaidr.com/


 

Journal of Advances in Developmental Research (IJAIDR) 

E-ISSN: 0976-4844   ●   Website: www.ijaidr.com   ●   Email: editor@ijaidr.com 

 

IJAIDR25021707 Volume 16, Issue 2, July-December 2025 13  

type Node struct { 

 id int 

 x  float64 

 y  float64 

} 

 

type Router struct { 

 nodes []Node 

} 

 

var totalHops int64 

 

func distance(aX, aY, bX, bY float64) float64 { 

 return math.Sqrt((aX-bX)*(aX-bX) + (aY-bY)*(aY-bY)) 

} 

 

func newRouter(n int) *Router { 

 ns := make([]Node, n) 

 for i := 0; i < n; i++ { 

  ns[i] = Node{ 

   id: i, 

   x:  rand.Float64() * gridSize, 

   y:  rand.Float64() * gridSize, 

  } 

 } 

 return &Router{nodes: ns} 

} 

 

func (r *Router) nearest(x, y float64) int { 

 best := 0 

 bestDist := math.MaxFloat64 

 

 for i, n := range r.nodes { 

  d := distance(x, y, n.x, n.y) 

  if d < bestDist { 

   bestDist = d 

   best = i 

  } 

 } 

 return best 

} 

 

func hopsFromDistance(d float64) int { 

 if d < 2 { 

  return 1 

 } 

 if d < 4 { 

  return 2 

 } 

 if d < 6 { 
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  return 3 

 } 

 return 4 

} 

 

func client(id int, r *Router, wg *sync.WaitGroup) { 

 defer wg.Done() 

 

 x := rand.Float64() * gridSize 

 y := rand.Float64() * gridSize 

 

 for i := 0; i < requests; i++ { 

  n := r.nearest(x, y) 

  target := r.nodes[n] 

  d := distance(x, y, target.x, target.y) 

  h := hopsFromDistance(d) 

  atomic.AddInt64(&totalHops, int64(h)) 

 } 

} 

 

func main() { 

 rand.Seed(time.Now().UnixNano()) 

 

 router := newRouter(nodes) 

 

 start := time.Now() 

 

 var wg sync.WaitGroup 

 

 for i := 0; i < clients; i++ { 

  wg.Add(1) 

  go client(i, router, &wg) 

 } 

 

 wg.Wait() 

 

 elapsed := time.Since(start) 

 

 totalReq := clients * requests 

 avgHops := float64(totalHops) / float64(totalReq) 

 

 fmt.Println("Requests:", totalReq) 

 fmt.Println("Average Hops:", avgHops) 

 fmt.Println("Time:", elapsed) 

} 

 

The program simulates a locality aware distributed routing system that minimizes communication distance 

and reduces hop count during data access. The system models multiple storage nodes placed at different 

positions within a virtual grid. Each node has coordinates that represent its physical or logical location. 

This spatial representation allows the system to estimate proximity between clients and storage nodes. .A 
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router component maintains the list of nodes and determines the nearest node for every request. For each 

client, random coordinates are generated to simulate its position in the network. When a request is issued, 

the router calculates the distance between the client and all available nodes and selects the closest one. 

This ensures that communication occurs with the nearest server rather than a randomly chosen remote 

node. 

 

The hop count is estimated based on the computed distance. Shorter distances correspond to fewer hops, 

while longer distances result in slightly more hops. Each request contributes its hop value to a global 

counter. Multiple clients run concurrently using goroutines to simulate parallel requests. After execution, 

the program calculates the average hop count across all requests and reports it. This demonstrates how 

locality aware routing reduces traversal and improves communication efficiency. 

 

Table IV. Locality Aware Placement Hops – 1 

Cluster Size Locality Aware Placement Hops 

3 1.7 

5 2 

7 2.3 

9 2.6 

11 2.9 

 

Table IV Presents the average hop count for Locality Aware Placement across cluster sizes from 3 to 11 

nodes. The hop count increases gradually from 1.7 to 2.9, indicating that requests typically traverse only 

a small number of intermediate nodes. Unlike static placement, data is stored closer to frequently accessing 

clients, which minimizes communication distance. Even as the cluster expands, the growth in hop count 

remains limited. This controlled increase demonstrates that locality awareness effectively maintains short 

routing paths. Overall, the table highlights improved communication efficiency and better scalability 

compared to conventional placement strategies. 

 

 
.Fig 6. Locality Aware Placement Hops - 1 

 

Fig 6 Illustrates hop count behavior for Locality Aware Placement as the cluster size increases. The curve 

rises slowly from 1.7 to 2.9, showing minimal growth in communication distance. This gentle slope 

indicates that most requests are served by nearby nodes, resulting in fewer intermediate traversals. Unlike 

static systems with steep increases, the locality aware approach maintains stable and efficient routing. 

Overall, the graph demonstrates reduced hops and improved scalability. 
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Table V. Locality Aware Placement Hops – 2 

Cluster Size 
Locality Aware Placement 

Hops 

3 1.9 

5 2.2 

7 2.5 

9 2.8 

11 3.1 

 

Table V Shows the average hop count for Locality Aware Placement as the cluster size increases from 3 

to 11 nodes. The hop count rises gradually from 1.9 to 3.1, indicating that communication paths remain 

short even as the system scales. Because data is placed closer to frequently accessing clients, most requests 

are served by nearby nodes, reducing the need for multiple intermediate traversals. The slow and 

controlled increase demonstrates that locality based placement effectively limits communication distance. 

Unlike static approaches, the system avoids unnecessary cross node routing, resulting in fewer hops and 

improved efficiency. Overall, the table highlights consistent communication performance and better 

scalability with locality awareness. 

 

 
Fig 7.   Locality Aware Placement Hops - 2 

 

Fig 7  Illustrates hop count trends for Locality Aware Placement across increasing cluster sizes. The curve 

shows a gentle rise from 1.9 to 3.1, reflecting minimal growth in communication distance. Most requests 

follow short paths due to proximity based routing. This steady behavior indicates reduced traversal and 

improved efficiency. Overall, the graph demonstrates stable and scalable communication performance. 

 

Table VI. Locality Aware Placement Hops – 3 

Cluster 

Size 
Locality Aware Placement Hops 

3 2.2 

5 2.5 

7 2.8 

9 3.1 

11 3.4 
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Table VI Presents the average hop count for Locality Aware Placement across cluster sizes ranging from 

3 to 11 nodes. The values increase gradually from 2.2 to 3.4, showing only a small rise as the system 

scales. This behavior indicates that requests are primarily served by nearby nodes, keeping communication 

paths short and efficient. Because placement decisions consider proximity and access locality, unnecessary 

cross node traversal is minimized. Even when additional nodes are introduced, the system maintains 

controlled routing distances, preventing large increases in hop count. Each request therefore experiences 

fewer intermediate transitions, which reduces delay and network overhead. Overall, the table demonstrates 

that locality aware placement provides stable communication efficiency and better scalability compared 

to conventional static strategies. 

 

 
Fig 8. Locality Aware Placement Hops – 3 

 

Fig 8 Shows hop count growth for Locality Aware Placement as cluster size increases. The line rises gently 

from 2.2 to 3.4, indicating limited expansion in communication distance. Most requests follow short paths 

to nearby nodes, reducing intermediate traversal. This smooth trend reflects stable routing behavior and 

efficient data access. Compared to static placement, the increase is minimal, demonstrating improved 

scalability and lower network overhead. Overall, the graph highlights consistent and locality driven 

communication efficiency. 

 

Table VII. Static Vs Locality aware Placement – 1 

Cluster 

Size 

Static 

Placement 

Hops 

Locality Aware 

Placement Hops 

3 3.2 1.7 

5 4 2 

7 4.8 2.3 

9 5.6 2.6 

11 6.3 2.9 

 

Table VII Compares the average hop count between Static Placement and Locality Aware Placement 

across cluster sizes from 3 to 11 nodes. Static Placement shows a steady increase in hop count from 3.2 to 

6.3 as the system grows, indicating that requests must traverse several intermediate nodes to reach distant 

data partitions. This behavior results from fixed mapping that ignores proximity, leading to longer 

communication paths and higher routing overhead. In contrast, Locality Aware Placement maintains 

significantly lower hop counts, increasing only from 1.7 to 2.9. Because data is placed closer to requesting 

clients, most communication occurs within nearby nodes, reducing traversal distance. The widening gap 
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between the two approaches demonstrates improved efficiency under locality awareness. Overall, the 

comparison highlights shorter paths, reduced network overhead, and better scalability with locality based 

placement. 

 

 
Fig 9. Static Vs Locality aware Placement – 1 

 

Fig 9 Shows two distinct trends for hop count as cluster size increases. The Static Placement curve rises 

sharply, reflecting longer communication paths and frequent remote access. The Locality Aware curve 

increases slowly, indicating shorter routing distances and fewer intermediate traversals. The growing 

separation between the lines highlights the effectiveness of proximity based placement. Overall, the graph 

clearly demonstrates reduced hops and improved scalability with locality awareness. 

 

Table VIII. Static Vs Locality aware Placement – 2 

Cluster 

Size 

Static 

Placement 

Hops 

Locality Aware 

Placement Hops 

3 3.6 1.9 

5 4.5 2.2 

7 5.4 2.5 

9 6.3 2.8 

11 7.2 3.1 

 

Table VIII Compares the average hop count between Static Placement and Locality Aware Placement 

across cluster sizes from 3 to 11 nodes. Under Static Placement, hop count increases noticeably from 3.6 

to 7.2 as more nodes are added. This steady rise indicates that requests frequently travel across distant 

nodes because data partitions are assigned without considering proximity. As a result, communication 

paths become longer, introducing additional routing delay and network overhead. In contrast, Locality 

Aware Placement maintains much lower hop counts, increasing only from 1.9 to 3.1. By placing frequently 

accessed data closer to requesting clients, the system reduces intermediate traversals and limits 

communication distance. Even as the cluster grows, the increase remains gradual and controlled. The clear 

gap between the two approaches demonstrates improved routing efficiency. Overall, locality awareness 

significantly reduces hop count and supports better scalability. 
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Fig 10. Static Vs Locality aware Placement – 2 

 

Fig 10. Compares hop count trends for Static Placement and Locality Aware Placement as cluster size 

increases. The Static curve rises steeply from 3.6 to 7.2, indicating longer communication paths and 

frequent traversal across multiple intermediate nodes. This pattern reflects inefficient routing and 

increased network overhead. In contrast, the Locality Aware curve increases gradually from 1.9 to 3.1, 

showing that most requests are served by nearby nodes with minimal traversal. The widening gap between 

the two lines highlights the effectiveness of proximity based placement. Overall, the graph demonstrates 

reduced communication distance and improved scalability with locality awareness. 

 

Table IX. Static Vs Locality aware Placement – 3 

Cluster 

Size 

Static 

Placement 

Hops 

Locality Aware 

Placement Hops 

3 4.2 2.2 

5 5.3 2.5 

7 6.5 2.8 

9 7.6 3.1 

11 8.8 3.4 

 

Table IX The table compares node utilization between Static Partitioning and Elastic Scaling across cluster 

sizes from 3 to 11 nodes. Under Static Partitioning, utilization gradually decreases from 69 percent to 56 

percent as the cluster grows. This decline occurs because fixed partition assignments cannot evenly 

distribute workload across all nodes, leading to resource imbalance and underutilized capacity. As 

additional nodes are introduced, some remain idle or lightly loaded, reducing overall efficiency. 

In contrast, Elastic Scaling consistently improves utilization, increasing from 88 percent to 97 percent. 

This behavior indicates that workload is dynamically distributed based on demand, allowing nodes to 

actively participate in processing tasks. The adaptive nature of elastic scaling minimizes idle resources 

and maintains balanced usage. The clear difference between the two approaches demonstrates that elastic 

strategies achieve higher efficiency, better resource distribution, and improved scalability in distributed 

environments. 
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Fig 11. Static Vs Locality aware Placement – 3 

 

Fig 11. Shows opposite trends for node utilization under Static Partitioning and Elastic Scaling. Static 

utilization declines steadily as cluster size increases, reflecting resource imbalance and idle nodes. In 

contrast, Elastic Scaling rises consistently, indicating effective workload distribution and higher active 

usage. The widening gap between the two curves highlights improved efficiency with elastic strategies. 

Overall, the graph demonstrates better scalability and resource utilization through dynamic scaling. 

 

EVALUATION 

The performance of the system is evaluated using hop count and node utilization across varying cluster 

sizes from 3 to 11 nodes. Static placement and partitioning approaches consistently show increased 

communication distance and reduced resource efficiency as the cluster grows. Hop count rises steadily, 

indicating longer routing paths and higher network traversal. Similarly, static utilization declines due to 

uneven workload distribution, leaving several nodes underused. These factors collectively degrade 

scalability and overall system performance.  

In contrast, locality aware placement maintains lower hop counts by routing requests to nearby nodes, 

resulting in shorter communication paths and reduced latency. Elastic scaling further improves resource 

efficiency by dynamically balancing workload across all available nodes. The combined effect leads to 

stable communication overhead and higher utilization even at larger cluster sizes. The evaluation clearly 

demonstrates that proximity aware routing and adaptive scaling enhance scalability and operational 

efficiency. 

 

CONCLUSION 

Distributed systems experience performance degradation when communication paths grow longer and 

resources remain underutilized. Static placement strategies increase hop count and reduce efficiency as 

clusters expand. Locality aware routing minimizes traversal distance, while elastic scaling ensures 

balanced node usage. Together, these techniques maintain short communication paths and higher 

utilization. The overall design supports better scalability, reduced overhead, and improved system 

efficiency for large distributed environments. 

 

Future Work: Future work will focus on reducing system complexity by simplifying routing logic and 

placement mechanisms, developing lightweight algorithms that maintain locality benefits while 

minimizing coordination overhead and implementation effort in large deployments. 
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