

Journal of Advances in Developmental Research (IJAIDR)

E-ISSN: 0976-4844 ● Website: www.ijaidr.com ● Email: editor@ijaidr.com

IJAIDR26011682 Volume 17, Issue 1, January-June 2026 1

Building Reactive GraphQL Services

with Spring WebFlux and Netflix DGS

Saurabh Atri

srbwin@gmail.com, satri@ieee.org

Abstract:

This journal describes how to build and operate a GraphQL server using Spring WebFlux and the Netflix

Domain Graph Service (DGS) framework. Spring WebFlux provides a non-blocking web runtime based

on Reactive Streams and is optimized for high-concurrency, I/O-bound workloads [1][2]. Netflix DGS

provides a schema-first, annotation-driven programming model on Spring Boot, and integrates internally

with Spring for GraphQL to reuse its transport and execution capabilities [3][4]. The focus is practical:

correct reactive boundaries (avoiding event-loop blocking), resolver batching with DataLoader,

subscriptions over SSE/WebSocket, testing strategy, and operational concerns such as version

compatibility and observability.

Keywords: Spring WebFlux, Project Reactor, GraphQL, Netflix DGS, Spring for GraphQL, reactive

systems.

1. INTRODUCTION

WebFlux and GraphQL solve different problems. WebFlux is a non-blocking web runtime; GraphQL is

an API query language and execution model. Combining them is useful when your GraphQL resolvers are

primarily I/O bound (remote services, reactive databases, event streams) and you need high concurrency

without thread-per-request scaling. If your resolvers are mostly blocking (JPA/JDBC/legacy SDKs),

WebFlux will not help unless you isolate blocking work on dedicated schedulers.

2. BACKGROUND: SPRING WEBFLUX RUNTIME MODEL

Spring WebFlux is the reactive-stack web framework in Spring. It runs on non-blocking servers such as

Reactor Netty and is based on Reactive Streams backpressure [1][2]. Instead of dedicating one thread per

request, the server keeps many requests in-flight while awaiting downstream I/O.

Hard rules for correctness:

• Do not call block() on request threads (event loop).

• Avoid blocking clients and drivers inside resolvers; prefer reactive clients (WebClient) and reactive

data access.

• If you must call blocking code, offload it using a bounded scheduler and treat it as a temporary

containment strategy.

Containment pattern for unavoidable blocking calls:

Mono.fromCallable(() -> blockingLegacyCall())

 .subscribeOn(Schedulers.boundedElastic());

3. NETFLIX DGS OVERVIEW

The DGS framework is a GraphQL server framework designed for Spring Boot. It provides schema-first

development, annotation-based data fetchers, DataLoader support for batching, and testing utilities [3].

https://www.ijaidr.com/
mailto:srbwin@gmail.com
mailto:satri@ieee.org

Journal of Advances in Developmental Research (IJAIDR)

E-ISSN: 0976-4844 ● Website: www.ijaidr.com ● Email: editor@ijaidr.com

IJAIDR26011682 Volume 17, Issue 1, January-June 2026 2

Modern DGS releases integrate internally with Spring for GraphQL so that DGS users can benefit from

Spring for GraphQL features without the framework reimplementing transports and execution [4].

4. ARCHITECTURE: DGS + SPRING FOR GRAPHQL ON WEBFLUX

At runtime, a typical WebFlux + DGS deployment looks like the following:

Client

 -> HTTP POST /graphql (queries, mutations)

 -> WebSocket or SSE (subscriptions)

Spring WebFlux (reactive server)

 -> Spring for GraphQL transport + execution

 -> DGS components (schema, @DgsQuery/@DgsData fetchers, DataLoaders)

 -> Downstream services (reactive DB, HTTP APIs, message brokers)

Spring for GraphQL provides server transports over HTTP and WebSocket [6]. Spring for GraphQL also

added support for GraphQL subscriptions over SSE in recent releases [7]. DGS leverages this integration

layer [4].

5. IMPLEMENTATION PATTERNS

5.1 Project setup

Minimal dependencies (Gradle Kotlin DSL):

dependencies {

 implementation("com.netflix.graphql.dgs:dgs-starter")

 implementation("org.springframework.boot:spring-boot-starter-webflux")

}

By default, DGS loads schema files from classpath locations under schema/ (configurable) [3].

5.2 Schema-first development

Example schema (schema/product.graphqls):

type Query {

 product(id: ID!): Product

}

type Product {

 id: ID!

 name: String!

 price: Float!

 reviews: [Review!]!

}

type Review {

 id: ID!

 productId: ID!

 rating: Int!

 body: String

}

https://www.ijaidr.com/

Journal of Advances in Developmental Research (IJAIDR)

E-ISSN: 0976-4844 ● Website: www.ijaidr.com ● Email: editor@ijaidr.com

IJAIDR26011682 Volume 17, Issue 1, January-June 2026 3

5.3 Reactive queries and field resolvers

Fetchers should return non-blocking types and avoid blocking I/O. In WebFlux, use reactive clients/drivers

end-to-end.

Example query fetcher:

@DgsComponent

public class ProductDataFetcher {

 private final ProductService service;

 public ProductDataFetcher(ProductService service) {

 this.service = service;

 }

 @DgsQuery

 public Mono<Product> product(@InputArgument String id) {

 return service.getProduct(id); // must be non-blocking

 }

}

5.4 DataLoader batching to avoid N+1

Nested GraphQL fields often trigger N+1 patterns (one downstream call per parent object). DGS supports

DataLoaders to batch and cache within a request [3]. The batch function must be implemented as an

efficient downstream query.

Mapped batch loader sketch:

@DgsDataLoader(name = "reviewsByProduct")

public class ReviewsByProductLoader implements MappedBatchLoader<String, List<Review>> {

 private final ReviewService reviewService;

 public CompletionStage<Map<String, List<Review>>> load(Set<String> keys) {

 return reviewService.batchReviews(keys).toFuture();

 }

}

6. SUBSCRIPTIONS: SSE AND WEBSOCKET

GraphQL subscriptions are the primary case where a GraphQL operation naturally returns a stream. Spring

for GraphQL supports WebSocket transports for subscriptions and also supports subscriptions over SSE

[6][7].

Operational guidance:

• Use WebSocket when you need bidirectional sessions, many concurrent subscriptions, or client

libraries built around graphql-transport-ws.

• Use SSE when you want simple HTTP-based streaming (often easier through proxies), but be aware

of connection limits and intermediaries.

• Make subscription publishers hot (shared) only when appropriate; otherwise each client connection

may trigger duplicated upstream work.

https://www.ijaidr.com/

Journal of Advances in Developmental Research (IJAIDR)

E-ISSN: 0976-4844 ● Website: www.ijaidr.com ● Email: editor@ijaidr.com

IJAIDR26011682 Volume 17, Issue 1, January-June 2026 4

7. PERFORMANCE AND RELIABILITY

Checklist:

• Event-loop safety: no blocking calls in resolvers.

• Batching: DataLoader for nested fields; aggregate downstream calls.

• Query controls: depth/complexity limits; request size limits.

• Timeouts and retries: enforce timeouts for downstream calls; prefer bounded retries with jitter.

• Backpressure: keep streaming publishers bounded; apply buffering policies intentionally.

8. OBSERVABILITY

In reactive services, correlation and tracing must not rely on thread-local assumptions. Use structured

logging and tracing that propagates context across reactive boundaries. Add GraphQL-level timing and

error telemetry (operation name, field latencies, downstream call timing) using instrumentation.

9. TESTING STRATEGY

Recommended layers:

• Schema validation tests: ensure the schema loads and basic operations execute.

• Fetcher unit tests: direct tests for resolver logic with mocked services.

• End-to-end tests: WebFlux WebTestClient against /graphql for typical queries and error cases.

• Load tests: concurrency-focused tests to detect event-loop blocking and downstream saturation.

10. VERSION COMPATIBILITY AND UPGRADE GUIDANCE

DGS major versions track Spring Boot major versions. DGS Framework 11.0.0 is built on Spring Boot 4;

applications on Spring Boot 3 should remain on DGS 10.x until upgraded [5].

Spring Boot Recommended DGS Notes

3.x 10.x Use DGS 10 baseline; upgrade Boot first.

4.x 11.x DGS 11 baseline aligns with Boot 4 [5].

11. CONCLUSION

Spring WebFlux and Netflix DGS are a strong fit when you need a GraphQL server that handles high

concurrency and streaming subscriptions while keeping I/O non-blocking. The core engineering discipline

is enforcing non-blocking boundaries, batching resolver access with DataLoader, and operating the service

with strong query controls and observability.

REFERENCES:

1. Spring Framework Reference Documentation, “Web on Reactive Stack (Spring WebFlux).”

https://docs.spring.io/spring-framework/reference/web-reactive.html (accessed 2026-01-03).

2. Spring Framework Reference Documentation, “Spring WebFlux.” https://docs.spring.io/spring-

framework/reference/web/webflux.html (accessed 2026-01-03).

3. Netflix DGS Framework Documentation, “DGS Framework - Getting Started.”

https://netflix.github.io/dgs/ (accessed 2026-01-03).

4. Netflix DGS Framework Documentation, “Spring GraphQL Integration.”

https://netflix.github.io/dgs/spring-graphql-integration/ (accessed 2026-01-03).

5. Netflix DGS Framework GitHub Releases, “DGS Framework 11.0.0 (Spring Boot 4 baseline).”

https://github.com/Netflix/dgs-framework/releases (accessed 2026-01-03).

6. Spring for GraphQL Reference Documentation, “Server Transports.”

https://docs.spring.io/spring-graphql/reference/transports.html (accessed 2026-01-03).

https://www.ijaidr.com/

Journal of Advances in Developmental Research (IJAIDR)

E-ISSN: 0976-4844 ● Website: www.ijaidr.com ● Email: editor@ijaidr.com

IJAIDR26011682 Volume 17, Issue 1, January-June 2026 5

7. Spring for GraphQL Project Wiki, “Spring for GraphQL 1.3 - SSE Transport.”

https://github.com/spring-projects/spring-graphql/wiki/Spring-for-GraphQL-1.3 (accessed 2026-

01-03).

https://www.ijaidr.com/

